
 1

Now, an automatic procedure to find a w in the solution region.

Training (Learning) Algorithms – Preliminaries

General Procedure –

1. Construct a cost function J(w) (appropriately designed & chosen)

2. Minimize J(w) with respect to w (i.e., update w and check J(w) decreasing)

3. w at minimum of J(w) will be a solution weight vector w

Use Gradient Descent on J(w)

Let w(i) = solution weight vector at iteration i, then

)]([)()()1(iwJiiwiw w This is the basic Gradient Descent

)]([iwJw points in the direction of steepest descent of J.

N
N

w u
w

J
u

w

J
u

w

J
wJ ˆ....ˆˆ)(2

2
1

1

 (N-D space)

Two Considerations

1. Must choose an appropriate criterion (cost) function J(w). How? Coming in the

next section.

2. What about choosing the learning rate parameter,)(i ?

- There are various choices, specific to choices of J(w) (more to follow). These

are mostly suboptimal in terms of minimizes J after each step.

- There is an optimal choice (as defined above) under certain assumptions.

- Again, coming soon.

So,

1. Set)(i appropriately,

2. Then find a new w via iterations usig the gradient descent w(k+1)=w(k)-

(k)J[w(k)],.

 2

- Red arrows show how a simple gradient descent method works

- Black arrows show how a Newton’s method works. What is the Newton’s

method in optimization?

Perceptron Algorithm

General Idea –

If)1(

m
y gives 0)1(

m

T yw (i.e., misclassified), then increase w

General Perceptron Criterion Function

)~()(ywwJ
T

Yy

 (General Form)

where Y is the set of misclassified prototypes.

J(w)0 always (if all prototypes are correctly classified, J(w)=0).

(0~ ywT for misclassified)

 3

Other Criterion (Cost) Functions

General Form

Squared From

with b, a margin value

Note a=w

 4

[Perceptron Algorithm I] (One-at-a-time, Un-reflected Prototypes)

If prototype from S1, 0)1(
m

T yw , then increase w,

If prototype from S2, 0)2(
m

T yw , then decrease w,

Repeat for all M1+M2 prototypes;

Continue cycling through all prototypes until w is no longer updated.

For the i-th iteration:

 If 0)()1(
m

T yiw , then)1()()()1(
m

yiiwiw

 If 0)()2(
m

T yiw , then)2()()()1(
m

yiiwiw

 Otherwise w(i+1)=w(i)

 (Next prototype)
 0)(i

1 pass through all prototypes = 1 epoch

w2
𝑤 𝑦

()
= 0

𝑤 𝑦
()

= 0

w1, Weight Space

𝑤 𝑦
()

= 0

𝑤 𝑦
()

= 0

 5

What if is very large?

w2
𝑤 𝑦

()
= 0

𝑤 𝑦
()

= 0

w1, Weight Space

𝑤 𝑦
()

= 0

𝑤 𝑦
()

= 0

 6

[Perceptron Algorithm II] (One-at-a-time, Reflected Prototypes)

Use the reflected prototypes
w(i + 1) = w(i) + α(i)𝑦 if the prototype 𝑦 is misclassified.

w(i + 1) = w(i) if the prototype 𝑦 is correctly classified.

 7

 8

Choice of (i), Two Sample Choices:

1. Fixed Increment Rule

(i)=constant (independent of i)

(i)>0

2. Absolute Correction Rule

Choose at each iteration to be just large enough to guarantee correct

classification after weigh adjustment.

i.e., If 0)1()1(
m

T yiw

then 0])([)1()1()1()1(
m

T

mm

T yyiwyiw

Satisfied if]
)(

[
)1()1(

)1(

m

T

m

m

T

yy

yiw

[*]=smallest integer larger than *

Guaranteed convergence.

Notes:

1. Fixed increment with >0 is guaranteed to converge if prototypes are linearly

separable.

2. Absolute correction is guaranteed to converge if prototypes are linearly

separable.

Problems:

1. If prototypes are not linearly separable, perceptron will not converge

2. Perceptron terminated early may give poor classification results.

 9

※ Frank Rosenblatt who simulated Perceptron on an IBM computer in 1957.

