% Multiclass Problems: K classes (K>2 classes)

Let’s try to build a K-class discriminant by combining a number of 2-class discriminant
functions. But this faces some difficulties.

Try K Discriminant Functions, gk(x)

Consider a single K-class discriminant function (i.e., K linear functions).

Decision rule:
xeS, iff g (x)>g;(x), Vj#k

Decision hyperplanes:

g (x)=g,;(x)

T T
whx@ =W x®

= —J
T T\ (a)
(W, —w;)x" =0

Definition
If g,(»'")>g,(y")WWm=12,..M;j=k

Then the classes are linearly separable

This classifier is known as a linear machine.

Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem.



Example 1: Minimum Distance to Class Means Classifier (Linear)
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Rule: Assign unknown x to same class at closest <yi> using Euclidean metric.
Distance d:

N
d’[x,<y, >1= D [x,~ <y, >T
n=l1

=[x-<y >I'[x-<y, >]
=x'x- 2£T<Zk>+ <Xk>T<Xk>

Let )= d[x.< y, >]+ 32 x

1
a(=x" <y > <y, > <y = w'x+wy,

Example 2: Minimum Distance to Class Member Classifier

D(x. S0 = min {d(x.y*)}

m=1,...,M,
Decision Rule:

xeS, if DE,S)=min D(x,5,)

Assign x to the same class as the nearest prototype.



Generalized Linear Discriminant Functions to Nonlinear Classifiers

Example 1: Quadratic Discriminant Function
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Weights in symmetric matrix Ak
Vector bk
No. of terms — N square terms
N linear
N(N-1)/2 cross product terms

1 constant term

Let’s generalize

Nonlinear, but can be cast in the form of a linear classifier

Let f=[x12,...,x]%,,xl,...,xN,xlxz,x1x3,...,folxN]T =[S s S nvaioeees Jons Sonatoees

where T=N(N+3)/2
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It is also called as the @ Machine



Figure 5.5: The mapping y = (1,x,x2)! takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional @ space.

Example 2: Higher Order Polynomial Discriminant Functions

Can be extended to any r-th order polynomial discriminant function.

Let @(x) =w, f,(x)+ w, [, (X)+..+ Wy, [ (X) + Wy
where f,(x) are linearly independent, real, single-valued functions independent of the

weights.

Example:
1) f,(x)=x, ->linear case

i) f,(x)=x}x" jl=1..,N nme[0,1] -> quadratic

i) £ (x)=x} x5, x) > r-th order polynomial
I =1,.,N
n, e[0,1]

We can use the @ machine to map the r-th order polynomial nonlinear discriminant
function classifier into a linear classifier that operates in a higher dimensional space.
However, we do not know how to solve for the weights yet.

It’s coming soon! The techniques are known as linear training algorithms ©



