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※ Multiclass Problems: K classes (K>2 classes) 

Let’s try to build a K-class discriminant by combining a number of 2-class discriminant 

functions. But this faces some difficulties. 

 

Try K Discriminant Functions, gk(x) 

Consider a single K-class discriminant function (i.e., K linear functions). 

Decision rule: 

kSx  iff )()( xgxg jk  , kj   

Decision hyperplanes: 
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Definition 
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Then the classes are linearly separable 

This classifier is known as a linear machine. 
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Example 1: Minimum Distance to Class Means Classifier (Linear) 
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Rule: Assign unknown x to same class at closest <yk> using Euclidean metric. 

 

Distance d: 
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Let gk(x)= xxyxd T
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Example 2: Minimum Distance to Class Member Classifier 

 

D(x, Sk) = )},({min )(
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Decision Rule: 

jSx  if D(x,Sj)= ),(min k
k

SxD  

Assign x to the same class as the nearest prototype. 
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Generalized Linear Discriminant Functions to Nonlinear Classifiers 

 

Example 1: Quadratic Discriminant Function 
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Weights in symmetric matrix Ak 

Vector bk 

No. of terms – N square terms 

   N linear 

  N(N-1)/2 cross product terms 

  1 constant term 

 

Let’s generalize 

Nonlinear, but can be cast in the form of a linear classifier 

Let f=[ T
TNNNN
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where T=N(N+3)/2 
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It is also called as the   Machine 
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(Nonlinear) 
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Example 2: Higher Order Polynomial Discriminant Functions 

Can be extended to any r-th order polynomial discriminant function. 

Let 12211 )(...)()()(  MMM wxfwxfwxfwx  

where )(xf i  are linearly independent, real, single-valued functions independent of the 

weights. 

 

Example:  

i) ii xxf )(  -> linear case 
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We can use the   machine to map the r-th order polynomial nonlinear discriminant 

function classifier into a linear classifier that operates in a higher dimensional space. 

However, we do not know how to solve for the weights yet.  

It’s coming soon! The techniques are known as linear training algorithms ☺ 


