a Distribution-Free (No Statistics) Classification

Objective: Determine a function in feature space that specifies the membership in each class, partitioning the feature space into mutually exclusive regions by non-statistical criteria.

Discriminant Functions (or Characteristic Functions) $\Rightarrow g_{k}(\underline{x})$

Fundamentals

$g_{k}(\underline{x})$ for $\mathrm{k}=1,2, \ldots, \mathrm{~K}$

A point \underline{x} is a member of class S_{i}
iff $g_{i}(\underline{x})>g_{j}(\underline{x}) \forall j \neq i \leftarrow$ Classification rule

Classification System

Separating surfaces or decision boundaries defined by
$g_{k}(\underline{x})-g_{j}(\underline{x})=0$ separates S_{k} from S_{j}.

There are K classes $=>\frac{K(K-1)}{2}$ possible decision boundaries, but some may be redundant (e.g. $\mathrm{S}_{3}-\mathrm{S}_{4}$ above)

Note: g's are not unique

Can add constant to all g_{k} 's:

$$
\begin{aligned}
& g_{k}(\underline{x})<->g_{j}(\underline{x}) \\
& g_{k}(\underline{x})+C<->g_{j}(\underline{x})+C
\end{aligned}
$$

Can define new g ':

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{k}}^{\prime}(\underline{\mathrm{x}})=\mathrm{f}\left(\mathrm{~g}_{\mathrm{k}}(\underline{\mathrm{x}})\right) \\
& \left.\mathrm{g}_{\mathrm{j}} \mathrm{(} \underline{\mathrm{x}}\right)=\mathrm{f}\left(\mathrm{~g}_{\mathrm{j}}(\underline{\mathrm{x}})\right) \\
& \text { where } \mathrm{f} \text { is a monotonic and increasing function }
\end{aligned}
$$

Let's try Distance Functions

Measure of the distance from an unknown \underline{x} to a class S_{k} :

$$
D\left[\underline{x},\left\{\underline{y}_{m}^{(k)}\right\}\right]=\frac{1}{M_{k}} \sum_{1}^{M_{k}} d^{2}\left(\underline{x}, \underline{y}_{m}^{(k)}\right)
$$

This is Mean Square Distance d might be Euclidean distance

Properties of Distance Functions

A distance function must satisfy:

1. $d(\underline{x}, \underline{y})=d(\underline{y}, \underline{x})$
2. $d(\underline{x}, \underline{y}) \leq d(\underline{x}, \underline{z})+d(\underline{z}, \underline{y})$
3. $d(\underline{x}, \underline{y})=0, i f f \underline{x}=\underline{y}$
4. $d(\underline{x}, \underline{y}) \geq 0 \forall \underline{x}, \underline{y}$

Example: $\mathrm{N}=2$ classes, Minimum-distance-to-class classifier

$$
\mathrm{d}\left(\underline{\mathrm{x}}, \mathrm{~S}_{1}\right)<\mathrm{d}\left(\underline{\mathrm{x}}, \mathrm{~S}_{2}\right)=>\underline{x} \in S_{1}
$$

Let $g_{k}(\underline{x})=-d\left(\underline{x}, S_{k}\right)$

$$
\mathrm{g}_{1}(\underline{\mathrm{x}})>\mathrm{g}_{2}(\underline{\mathrm{x}}) \Rightarrow \underline{x} \in S_{1}
$$

Decision rule for a 2-class problem

Let $\mathrm{g}(\mathrm{k})=\mathrm{g}_{1}(\underline{\mathrm{x}})-\mathrm{g}_{2}(\underline{\mathrm{x}})$
If $\mathrm{g}(\underline{\mathrm{x}})>0, \underline{x} \in S_{1}$
If $\mathrm{g}(\underline{\mathrm{x}})<0, \quad \underline{x} \in S_{2}$

Linear Discriminant Functions

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{k}}(\underline{\mathrm{x}})=\mathrm{W}_{1}{ }^{(\mathrm{k})} \mathrm{X}_{1}+\mathrm{W}_{2}{ }^{(\mathrm{k})} \mathrm{X}_{2}+\ldots+\mathrm{W}_{\mathrm{N}}{ }^{(\mathrm{k})} \mathrm{X}_{\mathrm{N}}+\mathrm{W}_{\mathrm{N}+1}(\mathrm{k}) \\
& \mathrm{g}_{\mathrm{k}}(\underline{\mathrm{x}})=\underline{\mathrm{w}}^{\mathrm{T}} \underline{\mathrm{x}}+\underline{\mathrm{W}}_{\mathrm{N}+1}{ }^{(\mathrm{k})}=\underline{\mathrm{w}}^{(\mathrm{a})} \underline{\mathrm{x}}^{(\mathrm{a})}
\end{aligned}
$$

$\underline{x}^{(a)}=\left[\begin{array}{c}x_{1} \\ \cdots \\ x_{N} \\ 1\end{array}\right]=$ input vector in augmented, (a), space

- Superscript (a) is often suppressed

$\mathrm{X}_{3}=1$ plane in $(3-D)$ augmented space.

Linear decision surface:

$$
\begin{aligned}
& \text { 2-D, Line } \\
& \text { 3-D, plane } \\
& \text { N-D, hyperplane }(N-1)-D
\end{aligned}
$$

Example: Two-Class Problem

For a 2-class problem:

$$
\begin{aligned}
& \mathrm{g}(\underline{\mathrm{x}}) \quad=\mathrm{g}_{1}(\underline{\mathrm{x}})-\mathrm{g}_{2}(\underline{\mathrm{x}}) \\
& =\left(\underline{\mathrm{w}}_{1}{ }^{\mathrm{T}} \underline{\mathrm{X}}+\mathrm{w}_{\mathrm{N}+1}{ }^{(1)}\right)-\left(\underline{\mathrm{w}}_{2}{ }^{\mathrm{T}} \underline{\mathrm{X}}+\mathrm{w}_{\mathrm{N}+1}{ }^{(2)}\right) \\
& =\left(\underline{\mathrm{w}}_{1}{ }^{\mathrm{T}}-\underline{\mathrm{w}}_{2}{ }^{\mathrm{T}}\right) \underline{\mathrm{x}}+\left(\mathrm{w}_{\mathrm{N}+1}{ }^{(1)}-\mathrm{w}_{\mathrm{N}+1}{ }^{(2)}\right) \\
& g(\underline{x}) \quad=\underline{w}^{T} \underline{x}+w_{N+1}
\end{aligned}
$$

A Single Neuron Model

- Calculate g for 2-class problem:

Input Laver

- Compare to the 2-class linear classifier

Ex.) Find a linear classifier for the following data
Table 2.1 Classification Data

x_{1}	x_{2}	t
0.2	0.3	0
0.2	0.8	0
0.8	0.2	0
1.0	0.8	1

(b)

Figure 2.6 Classification by a threshold neuron: (a) classification data and (b) configuration of a linear threshold neuron for this task.

Inputs and weights as vectors. For simplicity, vector notation will be used. In this notation, an input vector is represented by upper case \mathbf{x} as

$$
\mathbf{x}=\left\{x_{1}, x_{2}\right\} .
$$

Thus, the four input vectors can be represented as

$$
\mathbf{x}_{1}=\{0.2,0.3\}, \mathbf{x}_{2}=\{0.2,0.8\}, \mathbf{x}_{3}=\{0.8,0.2\}, \mathbf{x}_{4}=\{1.0,0.8\} .
$$

Similarly, the weight vector can be denoted in vector form as

$$
\mathbf{w}=\left\{w_{1}, w_{2}\right\}
$$

The four input vectors and the weight vector are graphically presented in Figure 2.8.

The weighted sum of the inputs, $u=x_{1} \cdot w_{1}+x_{2} \cdot w_{2}$, can be represented as multiplication of the input and weight vectors or dot product as

$$
\begin{aligned}
u=\mathbf{w} \cdot \mathbf{x} & =\left\{w_{1}, w_{2}\right\} \cdot\left\{x_{1}, x_{2}\right\} \\
& =w_{1} x_{1}+w_{2} x_{2}
\end{aligned}
$$

$$
\text { For } \mathbf{w}=\{1,1\}, \quad u=x_{1}+x_{2} .
$$

Figure 2.7 Classification boundary of the threshold neuron superimposed on the data.

Figure 2.8 Representation of the input data and the weights as vectors.

