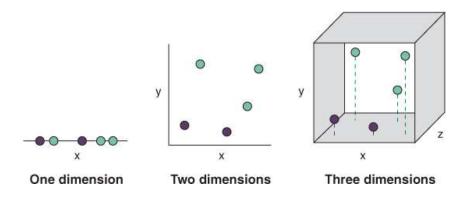
Notation Preliminaries

Unknown data vectors: <u>x</u>

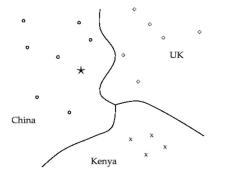
Prototypes:

 $\underline{y}_{m}^{(k)}$ is the m-th prototype that belongs to class S_{k} k = class index $m_{k} = \text{no. of prototypes in } S_{k}$ $\underline{y}_{m}^{(k)}, m = 1, 2, ..., m_{k}$ defines all prototypes of class S_{k} Prototype $\underline{y}_{m}^{(k)} = (y_{1m}^{(k)}, y_{2m}^{(k)}, y_{3m}^{(k)}, ..., y_{Nm}^{(k)})$

<u>Feature Space (Dimensionality N) (in general, input data)</u> Unknown <u>x</u>= $(x_1, x_2, x_3, ..., x_N)^T$

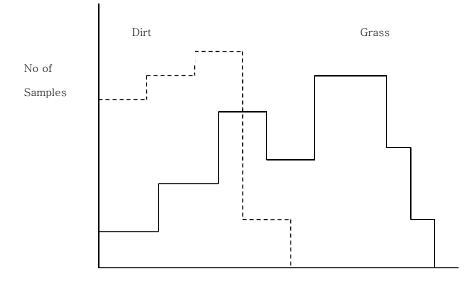


<u>Classification Space (Dimensionality K)</u> S_k, k=1,2,3, ... K defines all classes.



Introductory Example

- Classify dirt and grass regions from aerial pictures or images.



Green component (features)

Decision Rule if x < 5.5, $x \in S_1 = dirt$ If $x \ge 5.5$, $x \in S_2 = grass$

- Better than randomly assigning class
- Will have classification errors? YES

How to improve?

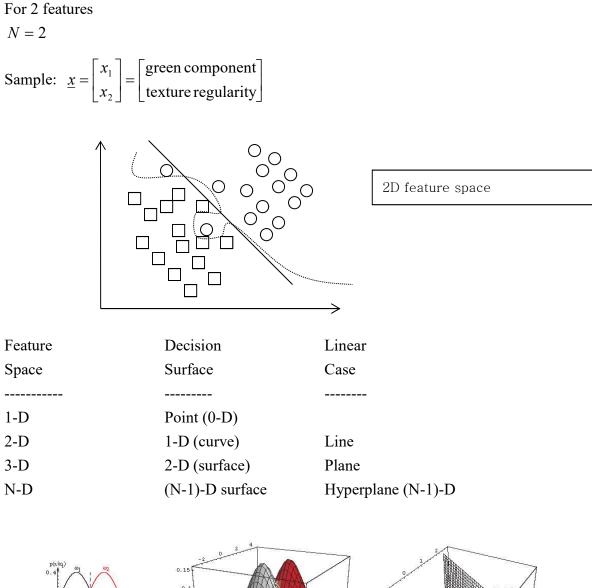
- 1. Incorporate statistics of samples
- 2. Add more features

Possible features

- i. Blue
- ii. Red
- iii. Frequency: to get a feature, define some average frequency magnitude

over the image, \overline{g} .

iv. Texture regularity



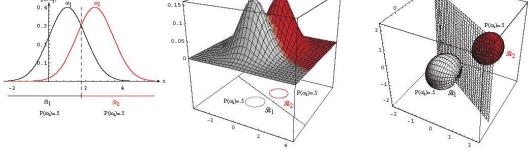
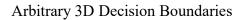


Figure 2.10: If the covariances of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of d-1 dimensions, perpendicular to the line separating the means. In these 1-, 2-, and 3-dimensional examples, we indicate $p(\mathbf{x}|\omega_i)$ and the boundaries for the case $P(\omega_1) = P(\omega_2)$. In the 3-dimensional case, the grid plane separates \mathcal{R}_1 from \mathcal{R}_2 .



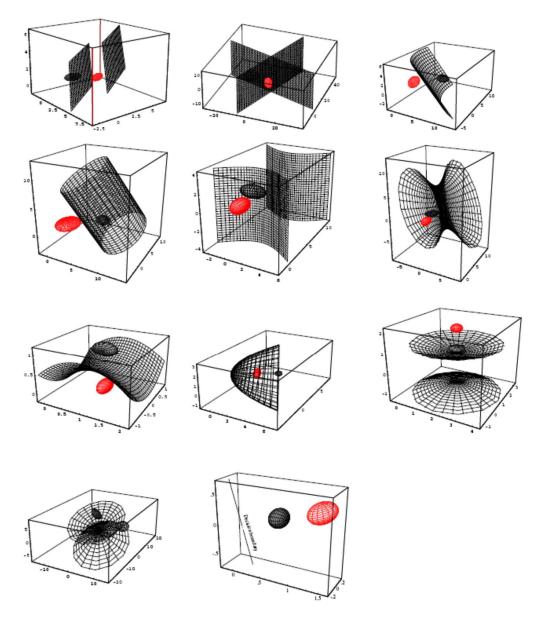


Figure 2.15: Arbitrary three-dimensional Gaussian distributions yield Bayes decision boundaries that are two-dimensional hyperquadrics. There are even degenerate cases in which the decision boundary is a line.

Inverse Crime

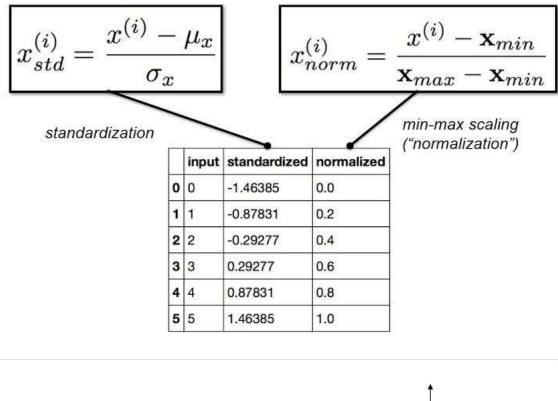
- Test performance on new data, not on the training set (no inverse crime)

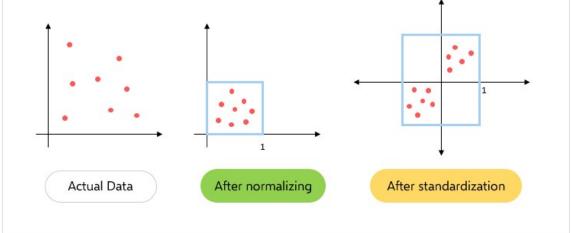
Note

- 1. Important to select good features
- 2. Important to have a good classifier
- 3. Performance on new patterns (unknowns)
 - A. How well does the system generalize?
 - B. How representative is the training set of the actual unknown data?
 - C. What is the inherent dimensionality of the problem?
- 4. Can selection of a decision boundary be automated? Training or Learning
- 5. To what degree are underlying statistics of the samples (features) known? How can they be used to improve the classifier's performance? -> Statistical classification
- 6. Can these algorithms be implemented in parallel hardware for fast execution? Artificial neural networks
- 7. What if you don't know what classes the prototypes belong to? Unsupervised classification and Unsupervised learning.

Data Normalization

Normalization is often required to have the desired meaning.





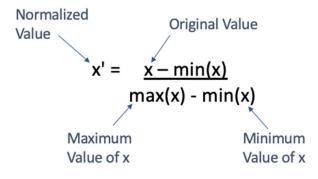
Example 1: Extremal Value Normalization

$$x'_r = \frac{x_r}{a_r}$$

where $a_r = \max_{k,m} \{y_{r_m}^{(k)}\} - \min_{k,m} \{y_{r_m}^{(k)}\}$

This is extremal value normalization (sensitive to noise)

Example 2: Min-Max Normalization



Example 3: Standard Deviation Normalization

Less sensitive to noise

Let
$$a_r = \sigma_r$$

 $\sigma_r^2 = \frac{\sum_{k=1}^{K} \sum_{m=1}^{M_k} [y_{r_m}^{(k)} - \overline{y}_r]^2}{\sum_{k=1}^{K} M_k}$

where $\overline{y_r} = \left[\sum \sum y_{r_m}^{(k)}\right] / \sum_{k=1}^{K} M_k$

This is standard deviation normalization.