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AT THE CONCLUSION OF THIS CHAPTER, STUDENTS WILL BE
ABLE TO:

• Describe the different origins and types of

biosignals.

• Distinguish between deterministic, periodic,

transient, and random signals.

• Explain the process of A/D conversion.

• Define the sampling theorem.

• Describe the main purposes and uses of the

Fourier transforms.

• Define the Z-transform.

• Describe the basic properties of a linear

system.

• Describe the concepts of filtering and signal

averaging.

• Explain the basic concepts and advantages of

fuzzy logic.

• Describe the basic concepts of artificial

neural networks.
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11.1 INTRODUCTION

Biological signals, or biosignals, are space, time, or space-time records of a biological
event such as a beating heart or a contracting muscle. The electrical, chemical, and mechan-
ical activity that occurs during this biological event often produces signals that can be
measured and analyzed. Biosignals, therefore, contain useful information that can be used
to understand the underlying physiological mechanisms of a specific biological event or
system and that may be useful for medical diagnosis.

Biological signals can be acquired in a variety of ways—for example, by a physician who
uses a stethoscope to listen to a patient’s heart sounds or with the aid of technologically
advanced biomedical instruments. Following data acquisition, biological signals are ana-
lyzed in order to retrieve useful information. Basic methods of signal analysis, such as
amplification, filtering, digitization, processing, and storage, can be applied to many
biological signals. These techniques are generally accomplished with simple electronic cir-
cuits or with digital computers. In addition to these common procedures, sophisticated dig-
ital processing methods are quite common and can significantly improve the quality of the
retrieved data. These include signal averaging, wavelet analysis, and artificial intelligence
techniques.

11.2 PHYSIOLOGICAL ORIGINS OF BIOSIGNALS

11.2.1 Bioelectric Signals

Nerve and muscle cells generate bioelectric signals that are the result of electrochemical
changes within and between cells (see Chapter 5). If a nerve or muscle cell is stimulated by
a stimulus that is strong enough to reach a necessary threshold, the cell will generate an
action potential. The action potential, which represents a brief flow of ions across the cell
membrane, can be measured with intracellular or extracellular electrodes. Action potentials
generated by an excited cell can be transmitted from one cell to adjacent cells via its axon.
When many cells become activated, an electric field is generated that propagates through
the biological tissue. These changes in extracellular potential can be measured on the sur-
face of the tissue or organism by using surface electrodes. The electrocardiogram (ECG),
electrogastrogram (EGG), electroencephalogram (EEG), and electromyogram (EMG) are
all examples of this phenomenon (Figure 11.1).

11.2.2 Biomagnetic Signals

Different organs, including the heart, brain, and lungs, also generate weak magnetic
fields that can be measured with magnetic sensors. Typically, the strength of the mag-
netic field is much weaker than the corresponding physiological bioelectric signals. Bio-
magnetism is the measurement of the magnetic signals that are associated with specific
physiological activity and that are typically linked to an accompanying electric field from
a specific tissue or organ. With the aid of very precise magnetic sensors or SQUID (super-
conducting quantum interference device) magnetometers, it is possible to directly monitor
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magnetic activity from the brain (magnetoencephalography, MEG), peripheral nerves
(magnetoneurography, MNG), gastrointestinal tract (magnetogastrography, MGG), and
the heart (magnetocardiography, MCG).

11.2.3 Biochemical Signals

Biochemical signals contain information about changes in concentration of various chem-
ical agents in the body. The concentration of various ions, such as calcium and potassium,
in cells can be measured and recorded. Changes in the partial pressures of oxygen (PO2

) and
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FIGURE 11.1 (a) Electrogram recorded from the surface of a pig’s heart during normal sinus rhythm.
(b) Electrogram recorded from the surface of the same pig’s heart during ventricular fibrillation (VF). (Sampled
at 1,000 samples/s.)

66911.2 PHYSIOLOGICAL ORIGINS OF BIOSIGNALS



carbon dioxide (PCO2
) in the respiratory system or blood are often measured to evaluate

normal levels of blood oxygen concentration. All of these constitute biochemical signals.
These biochemical signals can be used for a variety of purposes, such as determining levels
of glucose, lactate, and metabolites and providing information about the function of various
physiological systems.

11.2.4 Biomechanical Signals

Mechanical functions of biological systems, which include motion, displacement, tension,
force, pressure, and flow, also produce measurable biological signals. Blood pressure, for
example, is a measurement of the force that blood exerts against the walls of blood vessels.
Changes in blood pressure can be recorded as a waveform (Figure 11.2). The upstrokes in the
waveform represent the contraction of the ventricles of the heart as blood is ejected from the
heart into the body and blood pressure increases to the systolic pressure, the maximum blood
pressure (see Chapter 3). The downward portion of the waveform depicts ventricular relaxa-
tion as the blood pressure drops to the minimum value, better known as the diastolic pressure.
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FIGURE 11.2 Blood pressure waveform recorded from the aortic arch of a 4-year-old child. (Sampled at
200 samples/s.)
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11.2.5 Bioacoustic Signals

Bioacoustic signals are a special subset of biomechanical signals that involve vibrations
(motion). Many biological events produce acoustic noise. For instance, the flow of blood
through the valves in the heart has a distinctive sound. Measurements of the bioacoustic
signal of a heart valve can be used to determine whether it is operating properly. The respi-
ratory system, joints, and muscles also generate bioacoustic signals that propagate through
the biological medium and can often be measured at the skin surface by using acoustic
transducers such as microphones and accelerometers.

11.2.6 Biooptical Signals

Biooptical signals are generated by the optical or light induced attributes of biological
systems. Biooptical signals can occur naturally, or in some cases, the signals may be intro-
duced to measure a biological parameter with an external light medium. For example,
information about the health of a fetus may be obtained by measuring the fluorescence
characteristics of the amniotic fluid. Estimates of cardiac output can be made by using
the dye dilution method that involves monitoring the concentration of a dye as it recircu-
lates through the bloodstream. Finally, red and infrared light are used in various applica-
tions, such as to obtain precise measurements of blood oxygen levels by measuring the
light absorption across the skin or a particular tissue.

EXAMPLE PROBLEM 11.1

What types of biosignals would the muscles in your lower legs produce if you were to sprint

across a paved street?

Solution

Motion of the muscles and the external forces imposed as your feet hit the pavement produce

biomechanical signals. Muscle stimulation by nerves and the contraction of muscle cells produce

bioelectric signals. Metabolic processes in the muscle tissue could be measured as biochemical

signals.

11.3 CHARACTERISTICS OF BIOSIGNALS

Biological signals can be classified according to various characteristics of the signal,
including the waveform shape, statistical structure, and temporal properties. Two broad
classes of signals that are commonly encountered include continuous and discrete signals.
Continuous signals are defined over a continuum of time or space and are described by con-
tinuous variables. The notation x(t) is used to represent a signal, x, that varies as a function
of continuous time, t. Signals that are produced by biological phenomena are almost always
continuous signals. Some examples include voltage measurements from the heart (see
Figure 11.1), arterial blood pressure measurements (see Figure 11.2), and measurements
of electrical activity from the brain.
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Discrete signals are also commonly encountered in today’s clinical setting. Unlike continu-
ous signals, which are defined along a continuum of points in space or time, discrete signals
are defined only at a subset of regularly spaced points in time and/or space. Discrete signals
are therefore represented by arrays or sequences of numbers. The notation, x(n), is used to
represent a discrete sequence, x, that exists only at a subset of points in discrete time, n. Here,
n ¼ 0, 1, 2, 3 . . . is always an integer that represents the nth element of the discrete sequence.
Althoughmost biological signals are not discrete per se, discrete signals play an important role
due to today’s advancements in digital technology. Sophisticated medical instruments are
commonly used to convert continuous signals from the human body to discrete digital
sequences (see Chapter 7) that can be analyzed and interpreted with a computer. Computer
axial tomography (CAT) scans, for instance, take digital samples from continuous x-ray images
of a patient that are obtained from different perspective angles (see Chapter 15). These digi-
tized or discrete image slices are then digitally enhanced, manipulated, and processed to
generate a full three-dimensional computer model of a patient’s internal organs. Such technol-
ogies are indispensable tools for clinical diagnosis.

Biological signals can also be classified as being either deterministic or random. Determin-
istic signals can be described by mathematical functions or rules. Periodic and transient
signals make up a subset of all deterministic signals. Periodic signals are usually composed
of the sum of different sine waves or sinusoid components and can be expressed as

xðtÞ ¼ xðtþ kTÞ ð11:1Þ
where x(t) is the signal, k is an integer, and T is the period. The period represents the dis-
tance along the time axis between successive copies of the periodic signal. Periodic signals
have a basic waveshape with a duration of T units that repeats indefinitely. Transient
signals are nonzero or vary only over a finite time interval and subsequently decay to a con-
stant value as time progresses. The sine wave, shown in Figure 11.3a, is a simple example of
a periodic signal, since it repeats indefinitely with a repetition interval of 1 second. The
product of a decaying exponential and a sine wave, as shown in Figure 11.3b, is a transient
signal, since the signal amplitude approaches zero as time progresses.

Real biological signals almost always have some unpredictable noise or change in
parameters and, therefore, are not entirely deterministic. The ECG of a normal beating
heart at rest is an example of a signal that appears to be almost periodic but has a subtle
unpredictable component. The basic waveshape consists of the P wave, QRS complex,
and T wave and repeats (see Figure 3.22). However, the precise shapes of the P waves,
QRS complexes, and T are somewhat irregular from one heartbeat to another. The length
of time between QRS complexes, which is known as the R-R interval, also changes over
time as a result of heart rate variability (HRV). HRV is used as a diagnostic tool to predict
the health of a heart that has experienced a heart attack. The extended outlook for patients
with low HRV is generally worse than it is for patients with high HRV.

Random signals, also called stochastic signals, contain uncertainty in the parameters that
describe them. Because of this uncertainty, mathematical functions cannot be used to precisely
describe random signals. Instead, random signals are most often analyzed using statistical
techniques that require the treatment of the random parameters of the signal with probability
distributions or simple statistical measures such as the mean and standard deviation. The elec-
tromyogram (EMG), an electrical recording of electrical activity in skeletal muscle that is
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used for the diagnosis of neuromuscular disorders, is a random signal. Stationary random
signals have statistical properties, such as a mean and variance, that remain constant over
time. Conversely, nonstationary random signals have statistical properties that vary with time.
In many instances, the identification of stationary segments of random signals is important
for proper signal processing, pattern analysis, and clinical diagnosis.
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FIGURE 11.3 (a) Periodic sine wave signal x(t) ¼ sin(ot) with period of 1 Hz. (b) Transient signal y(t) ¼ e�0.75tsin
(ot) for the same 1 Hz sine wave.

67311.3 CHARACTERISTICS OF BIOSIGNALS



EXAMPLE PROBLEM 11.2

Ventricular fibrillation (VF) is a cardiac arrhythmia in which there are no regular QRS com-

plexes, T waves, or rhythmic contractions of the heart muscle (see Figure 11.1b). VF often leads

to sudden cardiac death, which is one of the leading causes of death in the United States. What

type of biosignal would most probably be recorded by an ECG when a heart goes into VF?

Solution

An ECG recording of a heart in ventricular fibrillation will be a random, continuous, bioelectric

signal.

11.4 SIGNAL ACQUISITION

11.4.1 Overview of Biosignal Data Acquisition

Biological signals are often very small and typically contain unwanted interference or
noise. Such interference has the detrimental effect of obscuring relevant information that
may be available in the measured signal. Noise can be extraneous in nature, arising from
sources outside the body, such as thermal noise in sensors or 60-cycle noise in the electronic
components of the acquisition system. Noise can also be intrinsic to the biological media,
meaning it can arise from adjacent tissues or organs. ECG measurements from the heart,
for instance, can be affected by bioelectric activity from adjacent muscles.

In order to extract meaningful information from biological signals sophisticated data
acquisition techniques and equipment are commonly used. High-precision low-noise
equipment is often necessary to minimize the effects of unwanted noise. Figure 11.4 shows
the basic components in a bioinstrumentation system.

Throughout the data acquisition procedure, it is critical that the information and struc-
ture of the original biological signal of interest be faithfully preserved. Since these signals
are often used to aid the diagnosis of pathological disorders, the procedures of amplifica-
tion, analog filtering, and A/D conversion should not generate misleading or untraceable
distortions. Distortions in a signal measurement could lead to an improper diagnosis.

11.4.2 Sensors, Amplifiers, and Analog Filters

Signals are first detected in the biological medium, such as a cell or on the skin’s surface,
by using a sensor (see Chapter 6). A sensor converts a physical measurand into an electric
output and provides an interface between biological systems and electrical recording
instruments. The type of biosignal determines what type of sensor will be used. ECGs,
for example, are measured with electrodes that have a silver-silver chloride (Ag-AgCl)
interface attached to the body that detects the movement of ions. Arterial blood pressure
is measured with a sensor that detects changes in pressure. It is very important that the sen-
sor used to detect the biological signal of interest does not adversely affect the properties
and characteristics of the signal it is measuring.
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After the biosignal has been detected with an appropriate sensor, it is usually amplified
and filtered. Operational amplifiers are electronic circuits that are used primarily to
increase the amplitude or size of a biosignal. Bioelectric signals, for instance, are often faint
and require up to a thousand-fold boosting of their amplitude with such amplifiers. An
analog filter may then be used to remove noise or to compensate for distortions caused
by the sensor. Amplification and filtering of the biosignal may also be necessary to meet
the hardware specifications of the data acquisition system. Continuous signals may need
to be limited to a certain band of frequencies before the signal can be digitized with an
analog-to-digital converter, prior to storing in a digital computer.

11.4.3 A/D Conversion

Analog-to-digital (A/D) converters are used to transform biological signals from contin-
uous analog waveforms to digital sequences. An A/D converter is a computer-controlled
voltmeter, which measures an input analog signal and gives a numeric representation of
the signal as its output. Figure 11.5a shows an analog signal, and Figure 11.5b shows a dig-
ital version of the same signal. The analog waveform, originally detected by the sensor and
subsequently amplified and filtered, is a continuous signal. The A/D converter transforms
the continuous, analog signal into a discrete, digital signal. The discrete signal consists of a
sequence of numbers that can easily be stored and processed on a digital computer. A/D
conversion is particularly important because storage and analysis of biosignals are becom-
ing increasingly computer based.

The digital conversion of an analog biological signal does not produce an exact replica
of the original signal. The discrete, digital signal is a digital approximation of the original,
analog signal that is generated by repeatedly sampling the amplitude level of the original
signal at fixed time intervals. As a result, the original, analog signal is represented as a
sequence of numbers: the digital signal.
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FIGURE 11.4 Sensors adapt the signal that is being observed into an electrical analog signal that can bemeasured
with a data acquisition system. The data acquisition system converts the analog signal into a calibrated digital signal
that can be stored. Digital signal processing techniques are applied to the stored signal to reduce noise and extract
additional information that can improve understanding of the physiological meaning of the original parameter.
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The two main processes involved in A/D conversion are sampling and quantization. Sam-
pling is the process by which a continuous signal is first converted into a discrete sequence
in time. If x(t) is an analog signal, sampling involves recording the amplitude value of x(t)
every T seconds. The amplitude value is denoted as x(kT) where k ¼ 0, 1, 2, 3, . . . is an inte-
ger that denotes the position or the sample number from the sample set or data sequence.
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FIGURE 11.5 (a) Analog version of a periodic signal. (b) Digital version of the analog signal.
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T represents the sampling interval or the time between adjacent samples. In real applica-
tions, finite data sequences are generally used in digital signal processing. Therefore, the
range of a data points is k ¼ 0, 1, . . . N-1, where N is the total number of discrete samples.
The sampling frequency, fs, or the sampling rate, is equal to the inverse of the sampling
period, 1/T, and is measured in units of Hertz (s�1).

The following are digital sequences that are of particular importance:

The unit-sample of impulse sequence:

d(k) ¼ 1 if k ¼ 0
0 if k 6¼ 0

The unit-step sequence:

u(k) ¼ 1 if k > 0
0 if k < 0

The exponential sequence:

aku(k) ¼ ak if k > 0
0 if k < 0

The sampling rate used to discretize a continuous signal is critical for the generation of
an accurate digital approximation. If the sampling rate is too low, distortions will occur
in the digital signal. Nyquist’s theorem states that the minimum sampling rate used,
fs, should be at least twice the maximum frequency of the original signal in order to
preserve all of the information of the analog signal. The Nyquist rate is calculated as

fnyquist ¼ 2 � fmax ð11:2Þ
where fmax is the highest frequency present in the analog signal. The Nyquist theorem
therefore states that fs must be greater than or equal to 2 � fmax in order to fully represent
the analog signal by a digital sequence. Practically, sampling is usually done at five to ten
times the highest frequency, fMax.

The second step in the A/D conversion process involves signal quantization. Quanti-
zation is the process by which the continuous amplitudes of the discrete signal are digi-
tized by a computer. In theory, the amplitudes of a continuous signal can be any of an
infinite number of possibilities. This makes it impossible to store all the values, given
the limited memory in computer chips. Quantization overcomes this by reducing the
number of available amplitudes to a finite number of possibilities that the computer
can handle.

Since digitized samples are usually stored and analyzed as binary numbers on com-
puters, every sample generated by the sampling process must be quantized. During quan-
tization, the series of samples from the discretized sequence are transformed into binary
numbers. The resolution of the A/D converter determines the number of bits that are
available for storage. Typically, most A/D converters approximate the discrete samples
with 8, 12, or 16 bits. If the number of bits is not sufficiently large, significant errors may
be incurred in the digital approximation.

A/D converters are characterized by the number of bits that they use to generate the
numbers of the digital approximation. A quantizer with N bits is capable of representing
a total of 2N possible amplitude values. Therefore, the resolution of an A/D converter
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increases as the number of bits increases. A 16-bit A/D converter has better resolution than
an 8-bit A/D converter, since it is capable of representing a total of 65,536 amplitude levels,
compared to 256 for the 8-bit converter. The resolution of an A/D converter is determined
by the voltage range of the input analog signal divided by the numeric range (the possible
number of amplitude values) of the A/D converter.

EXAMPLE PROBLEM 11.3

Find the resolution of an 8-bit A/D converter when an input signal with a 10 V range is

digitized.

Solution

input voltage range

2N
¼ 10 V

256
¼ 0:0391 V=bit ¼ 39:1 mV=bit

EXAMPLE PROBLEM 11.4

The frequency content of an analog EEG signal is 0.5–100 Hz. What is the lowest rate at which

the signal can be sampled to produce an accurate digital signal?

Solution

Highest frequency in analog signal ¼ 100 Hz.

fnyquist ¼ 2 � fmax ¼ 2 � 100 Hz ¼ 200 samples/second.

Another problem often encountered is determining what happens if a signal is not sam-
pled at a rate high enough to produce an accurate representation of the signal. A direct
result of the sampling theorem is that all frequencies of the form [f – kfs], where �1 � k
� 1 and fs ¼ 1/T, look the same once they are sampled.

EXAMPLE PROBLEM 11.5

A 360 Hz signal is sampled at 200 samples/second. What frequency will the “aliased” digital

signal contain?

Solution

According to the preceding formula, fs ¼ 200, and the pertinent set of frequencies that look

alike is in the form of [360 – k 200] ¼ [. . . 360 160 �40 �240 . . . .]. The only signal in this group

that will be accurately sampled is 40 Hz, since the sampling rate is more than twice this value.

Note that for real signals �40 Hz and þ40 Hz are equivalent—that is, cos(�ot) ¼ cos(ot) and

sin(�ot) ¼ �sin(ot). Thus, the sampled signal will exhibit a period of 40 Hz. The process is shown

in Figure 11.6.
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11.5 FREQUENCY DOMAIN REPRESENTATION
OF BIOLOGICAL SIGNALS

In the early nineteenth century, Joseph Fourier laid out one of the most important the-
ories on the field of function approximation. At the time, his result was applied toward
the problem of heat transfer in solids, but it has since gained a much broader appeal. Today,
Fourier’s findings provide a general theory for approximating complex waveforms with
simpler functions that has numerous applications in mathematics, physics, and engineer-
ing. This section summarizes the Fourier transform and variants of this technique that play
an important role in the analysis and interpretation of biological signals.

11.5.1 Periodic Signal Representation: The Trigonometric Fourier Series

As an artist mixes oil paints on a canvas, a scenic landscape is meticulously recreated by
combining various colors on a palate. It is well known that all shades of the color spectrum

0 0.005 0.01 0.015 0.02 0.025

−1

−0.5

0

0.5

1

360 Hz Signal,T=.005 s

0 0.005 0.01 0.015 0.02 0.025

−1

−0.5

0

0.5

1

40 Hz Signal, T=.005 s

TIME (s)

FIGURE 11.6 A 360 Hz sine wave is sampled every 5 ms—that is, at 200 samples/s. This sampling rate will
adequately sample a 40 Hz sine wave but not a 360 Hz sine wave.
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can be recreated by simply mixing primary colors (red, green, and blue, or RGB) in the cor-
rect proportions. Television and computer displays often transmit signals as RGB, and these
signals are collated together to create colors much as a master painter would on a canvas. In
fact, the human visual system takes exactly the opposite approach. The retina decomposes
images and scenery from the outside world into purely red-green-blue signals that are inde-
pendently analyzed and processed by our brains. Despite this, we perceive a multitude of
colors and shades.

This simple color analogy is at the heart of Fourier’s theory, which states that a complex
waveform can be approximated to any degree of accuracy with simpler functions. In 1807,
Fourier showed that an arbitrary periodic signal of period, T, can be represented mathemat-
ically as a sum of trigonometric functions. Conceptually, this is achieved by summing or
mixing sinusoids while simultaneously adjusting their amplitudes and frequency, as shown
for a square wave function in Figure 11.7.
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FIGURE 11.7 A square wave signal (a) is approximated by adding sinusoids (B–E). (b) 1 sinusoid, (c) 2 sinu-
soids, (d) 3 sinusoids, (e) 4 sinusoids. Increasing the number of sinusoids improves the quality of the
approximation.
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If the amplitudes and frequencies are chosen appropriately, the trigonometric signals
add constructively, thus recreating an arbitrary periodic signal. This is akin to combining
prime colors in precise ratios to recreate an arbitrary color and shade. RGB are the building
blocks for more elaborate colors, much as sinusoids of different frequencies serve as the
building blocks for more complex signals. All of these elements (the color and the required
proportions; the frequencies and their amplitudes) have to be precisely adjusted to achieve
a desired result. For example, a first-order approximation of the square wave is achieved by
fitting the square wave to a single sinusoid of appropriate frequency and amplitude. Suc-
cessive improvements in the approximation are obtained by adding higher-frequency sinu-
soid components, or harmonics, to the first-order approximation. If this procedure is
repeated indefinitely, it is possible to approximate the square wave signal with infinite
accuracy.

The Fourier series summarizes this result as

xðtÞ ¼ a0 þ
X1
m¼1

am cos mootþ bm sin mootð Þ ð11:3aÞ

where x(t) is the periodic signal to be approximated, o0 ¼ 2p=T is the fundamental frequency
of x(t) in units of radians/s, and the coefficients am and bm determine the amplitude of each
cosine and sine term at a specified frequency om ¼ mo0. Equation (11.3a) tells us that the peri-
odic signal, x(t), is precisely replicated by summing an infinite number of sinusoids. The fre-
quencies of the sinusoid functions always occur at integer multiples of oo and are referred to
as “harmonics” of the fundamental frequency. If we know the coefficients am and bm for each
of the corresponding sine or cosine terms, we can completely recover the signal x(t) by evalu-
ating the Fourier series. How do we determine am and bm for an arbitrary signal?

The coefficients of the Fourier series correspond to the amplitude of each sine and cosine.
These are determined as

a0 ¼ 1

T

ð
T

xðtÞdt ð11:3bÞ

am ¼ 2

T

ð
T

xðtÞ cosðmootÞdt ð11:3cÞ

bm ¼ 2

T

ð
T

xðtÞ sinðmootÞdt ð11:3dÞ

where the integrals are evaluated over a single period, T, of the waveform.

EXAMPLE PROBLEM 11.6

Find the trigonometric Fourier series of the square wave signal shown in Figure 11.7A, and

implement the result in MATLAB for the first ten components. Plot the time waveform and the

Fourier coefficients.

Continued
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Solution

First note that

T ¼ 2 and o0 ¼ 2p
T

¼ p

To simplify the analysis, integration for am and bm is carried out over the first period of the

waveform (from –1 to 1)

a0 ¼ 1

T

ð1
�1

xðtÞdt ¼ 1

2

ð1=2
�1=2

5dt ¼ 5

2

am ¼ 2

T

ð1
�1

xðtÞ cosðmootÞdt ¼
ð1=2
�1=2

5 � cosðmptÞdt

¼ �5
sinðmptÞ

mp

�����
1=2

�1=2

¼ �5
sinðmp=2Þ
mp=2

¼ 5 � sinc mp=2ð Þ

bm ¼ 2

T

ð1
�1

xðtÞ sinðmootÞdt ¼
ð1=2
�1=2

5 � sinðmptÞdt ¼ �5 � cosðmptÞ
mp

�����
1=2

�1=2

¼ 0

where by definition sincðxÞ ¼ sinðxÞ=x. Substituting the values for a0, am, and bm into Eq. (11.3a)

gives

xðtÞ ¼ 5

2
þ 5 �

X1
m¼1

sinðmp=2Þ
mp=2

cosðmptÞ

MATLAB implementation:

%Plotting Fourier Series Approximation
subplot(211)
time¼-2:0.01:2; %Time Axis
x¼5/2; %Initializing Signal
for m¼1:10

x¼xþ5*sin(m*pi/2)/m/pi*2*cos(m*pi*time);
end
plot(time,x,’k’) %Plotting and Labels
xlabel(’Time (sec)’)
ylabel(’Amplitude’)
set(gca,’Xtick’,[�2:2])
set(gca,’Ytick’,[0 5])
set(gca,’Box’,’off’)

%Plotting Fourier Magnitudes
subplot(212)
m¼1:10;
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Am¼[5/2 5*sin(m*pi/2)./m/pi*2]; %Fourier Magnitudes
Faxis¼(0:10)*.5; %Frequency Axis
plot(Faxis,Am,’k.’) %Plotting
axis([0 5 �2 4])
set(gca,’Box’,’off’)
xlabel(’Frequency (Hz)’)
ylabel(’Fourier Amplitudes’)

Note that the approximation of summing the first ten harmonics (Figure 11.8a) closely resem-

bles the desired square wave. The Fourier coefficients, am, for the first ten harmonics are shown as

a function of the harmonic frequency in Figure 11.8b. To fully replicate the sharp transitions of the

square wave, an infinite number of harmonics are required.

11.5.2 Compact Fourier Series

The trigonometric Fourier series provides a direct approach for fitting and analyzing
various types of biological signals, such as the repetitive beating of a heart or the cyclic
oscillations produced by the vocal folds as one speaks. Despite its utility, alternate forms
of the Fourier series are sometimes more appealing because they are easier to work with
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FIGURE 11.8 (a) MATLAB result showing the first ten terms of Fourier series approximation for the square
wave. (b) The Fourier coefficients are shown as a function of the harmonic frequency.
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and because signal measurements can often be interpreted more readily. The most widely
used counterparts for approximating and modeling biological signals are the exponential
and compact Fourier series.

The compact Fourier series is a close cousin of the standard Fourier series. This version
of the Fourier series is obtained by noting that the sum of sinusoids and cosines
can be rewritten by a single cosine term with the addition of a phase constant
am cosmootþ bm sinmoot ¼ Am cosðmootþ fmÞ, which leads to the compact form of the
Fourier series:

xðtÞ ¼ A0

2
þ
X1
m¼1

Am cosðmootþ fmÞ: ð11:4aÞ

The amplitude for each cosine, Am, is related to the Fourier coefficients through

Am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ b2m

q
ð11:4bÞ

and the cosine phase is obtained from am and bm as

fm ¼ tan�1 �bm
am

� �
: ð11:4cÞ

EXAMPLE PROBLEM 11.7

Convert the standard Fourier series for the square pulse function of Example Problem 11.5 to

compact form and implement in MATLAB.

Solution

We first need to determine the magnitude, Am, and phase, fm, for the compact Fourier series.

The magnitude is obtained as

Am ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m þ b2m

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 � sincðmp=2Þð Þ2 þ 0ð Þ2

q
¼ 5

sinðmp=2Þj j
pm=2

Since

sinðmp=2Þj j ¼ 1
0

m ¼ odd
m ¼ even

�

we have

Am ¼ 10=mp
0

m ¼ odd
m ¼ even

:

�

Unlike am or bm in the standard Fourier series, note that Am is strictly a positive quantity for

all m. The phase term is determined as

fm ¼ tan�1 �bm
am

� �
¼ tan�1 0

5 � sincðmp=2Þ
� �

¼ 0

p
for

m ¼ 0, 1, 4, 5, 8, 9 . . .

m ¼ 2, 3, 6, 7, 10, 11 . . .

�
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Combining results

xðtÞ ¼ 5

2
þ
X1
m¼1

10

mp
cos mootþ fmð Þ

where fm is as just defined. An interesting point regards the similarity of standard and compact

versions of the Fourier series for this square wave example. In the standard form, the coefficient

am alternates between positive and negative values, while for the compact form the Fourier coef-

ficient, Am, is identical in magnitude to am, but it is always a positive quantity. The sign (þ or –) of

the standard Fourier coefficient is now consumed in the phase term, which alternates between

0 and p . This forces the cosine to alternate in its external sign because � cosðxÞ ¼ cosðxþ pÞ.
The two equations are therefore mathematically identical, differing only in the way that the trigo-

nometric functions are written out.

MATLAB implementation:

%Plotting Fourier Series Approximation
time¼-2:0.01:2; %Time Axis
x¼5/2; %Initializing Signal
m¼1:10;
A¼(10*sin(m*pi/2)./m/pi); %Fourier Coefficients
P¼angle(A); %Phase Angle
A¼abs(A); %Fourier Magnitude
for m¼1:10

x¼xþA(m)*cos(m*pi*timeþP(m));
end
subplot(211)
plot(time,x,’k’) %Plotting and Labels
xlabel(’Time (sec)’)
ylabel(’Amplitude’)
set(gca,’Xtick’,[-2:2])
set(gca,’Ytick’,[0 5])
set(gca,’Box’,’off’)

%Plotting Fourier Magnitudes
subplot(212)
m¼1:10;
A¼[5/2 A]; %Fourier Magnitudes
Faxis¼(0:10)*.5; %Frequency Axis
plot(Faxis,A,’k.’) %Plotting
axis([0 5 -2 4])
set(gca,’Box’,’off’)
xlabel(’Frequency (Hz)’)
ylabel(’Fourier Amplitudes’)

The results are identical to those shown in Figures 11.8a and b.
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11.5.3 Exponential Fourier Series

The main result from the Fourier series analysis is that an arbitrary periodic signal can
approximate by summing individual cosine terms with specified amplitudes and phases.
This result serves as much of the conceptual and theoretical framework for the field of
signal analysis. In practice, the Fourier series is a useful tool for modeling various types
of quasi-periodic signals.

An alternative and somewhat more convenient form of this result is obtained by noting
that complex exponential functions are directly related to sinusoids and cosines through
Euler’s identities: cosðyÞ ¼ e jy þ e�jy

� �
=2 and sinðyÞ ¼ e jy � e�jy

� �
=2j, where j ¼ ffiffiffiffiffiffiffi�1

p
. By

applying Euler’s identity to the compact trigonometric Fourier series, an arbitrary periodic
signal can be expressed as a sum of complex exponential functions:

xðtÞ ¼
Xþ1

m¼�1
cme

jkoot ð11:5aÞ

This equation represents the exponential Fourier series of a periodic signal. The coefficients
cm are complex numbers that are related to the trigonometric Fourier coefficients

cm ¼ am � jbm
2

¼ Am

2
e jfm ð11:5bÞ

The proof for this result is beyond the scope of this text, but it is important to realize that
the trigonometric and exponential Fourier series are intimately related, as can be seen by
comparing their coefficients. The exponential coefficients can also be obtained directly by
integrating x(t),

cm ¼ 1

T

ð
T

xðtÞe�jmootdt ð11:5cÞ

over one cycle of the periodic signal. As for the trigonometric Fourier series, the exponential
form allows us to approximate a periodic signal to any degree of accuracy by adding a suf-
ficient number of complex exponential functions. A distinct advantage of the exponential
Fourier series, however, is that it requires only a single integral (Eq. (11.5c)), compared to
the trigonometric form, which requires three separate integrations.

EXAMPLE PROBLEM 11.8

Find the exponential Fourier series for the square wave of Figure 11.7a and imple-

ment in MATLAB for the first ten terms. Plot the time waveform and the Fourier series

coefficients.

Solution

Like Example Problem 11.6, the Fourier coefficients are obtained by integrating from �1 to 1.

Because a single cycle of the square wave signal has nonzero values between �1/2 and þ1/2,

the integral can be simplified by evaluating it between these limits:
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cm ¼ 1

T

ð
T

xðtÞe�jmootdt ¼ 1

2

ð1=2
�1=2

5e�jmptdt ¼ 5

2
� e

�jmpt

�jmp

�����
1=2

�1=2

¼ 5

2
� e

þjmp=2 � e�jmp=2

jmp
¼ 5

2
� sin mp=2ð Þ

mp=2
:

Therefore,

xðtÞ ¼
Xþ1

m¼�1
cme

jkoot ¼
X1

m¼�1

5

2
� sin mp=2ð Þ

mp=2
� e jmpt

MATLAB implementation:

%Plotting Fourier Series Approximation
subplot(211)
time¼-2:0.01:2; %Time Axis
x¼0; %Initialize Signal
for m¼-10:10

if m¼¼0
x¼xþ5/2; %Term for m¼0

else
x¼xþ5/2*sin(m*pi/2)/m/pi*2*exp(j*m*pi*time);

end
end
plot(time,x,’k’) %Plotting and Labels
xlabel(’Time (sec)’)
ylabel(’Amplitude’)
set(gca,’Xtick’,[-2:2])
set(gca,’Ytick’,[0 5])
set(gca,’Box’,’off’)

%Plotting Fourier Magnitudes
subplot(212)
m¼(-10:10)þ1E-10;
A¼[5/2*sin(m*pi/2)./m/pi*2]; %Fourier Magnitudes
Faxis¼(-10:10)*.5; %Frequency Axis
plot(Faxis,A,’k.’) %Plotting
axis([-5 5 -2 4])
set(gca,’Box’,’off’)
xlabel(’Frequency (Hz)’)
ylabel(’Fourier Amplitudes’)

Note that we now require positive and negative frequencies in the approximation. Results

showing the MATLAB output are shown in Figure 11.9.

Continued
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In practice, many periodic or quasi-periodic biological signals can be accurately approxi-
mated with only a few harmonic components. Figures 11.10 and 11.11 illustrate a harmonic
reconstruction of an aortic pressure waveform obtained by applying a Fourier series
approximation. Figure 11.10 plots the coefficients for the cosine series representation as a
function of the harmonic number. Note that the low-frequency coefficients are large in
amplitude, whereas the high-frequency coefficients contain little energy and do not contrib-
ute substantially to the reconstruction. The amplitude coefficients, Am, are plotted on a log10
scale so the smaller values are magnified and are therefore visible. Figure 11.11 shows sev-
eral levels of harmonic reconstruction. The mean plus the first and second harmonics pro-
vide the basis for the general systolic and diastolic shape, since the amplitudes of these
harmonics are large and contribute substantially to the reconstructed waveform. Additional
harmonics add fine details but do not contribute significantly to the raw waveform.

11.5.4 Fourier Transform

In many instances, conceptualizing a signal in terms of its contributing cosine or sine
functions has various advantages. The concept of frequency domain is an abstraction that
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FIGURE 11.9 (a) MATLAB result showing the first ten terms of exponential Fourier series approximation
for the square wave. (b) The compact Fourier coefficients are shown as a function of the harmonic frequency.
Note that both negative and positive frequencies are now necessary to approximate the square wave signal.
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is borne out of the Fourier series representation for a periodic signal. A signal can be
expressed either in the “time-domain” by the signal’s time function, x(t), or alternatively
in the “frequency-domain” by specifying the Fourier coefficient and phase, Am and fm, as
a function of the signal’s harmonic frequencies, om ¼ moo. Thus, if we know the Fourier
coefficients and the frequency components that make up the signal, we can fully recover
the periodic signal x(t).

One of the disadvantages of the Fourier series is that it applies only to periodic sig-
nals, and many biological signals are not periodic. In fact, a broad class of biological sig-
nals includes signals that are continuous functions of time but that never repeat in time.
Luckily, the concept of Fourier series can also be extended for signals that are not peri-
odic. The Fourier integral, also referred to as the Fourier transform, is used to decom-
pose a continuous aperiodic signal into its constituent frequency components

XðoÞ ¼
ð1

�1
xðtÞe�jotdt ð11:6Þ
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FIGURE 11.10 Harmonic coefficients of the aortic pressure waveform shown in Figure 11.2.
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much as the Fourier series decomposes a periodic signal into its corresponding trigonomet-
ric components. X(o) is a complex valued function of the continuous frequency, o, and is
analogous to the coefficients of the complex Fourier series, cm. A rigorous proof for this rela-
tionship is beyond the scope of this text, but it is useful to note that the Fourier integral is
derived directly from the exponential Fourier series by allowing the period, T, to approach
infinity. The coefficients cm of the trigonometric series approach X(o) as T ! 1. Concep-
tually, a function that repeats at infinity can be considered as aperiodic, since you will never
observe it repeating. Tables of Fourier transforms for many common signals can be found in
most signals and systems or signal processing textbooks.

As for the Fourier series, a procedure for converting the frequency-domain version of the
signal, X(o), to its time-domain expression is desired. The time-domain signal, x(t), can be
completely recovered from the Fourier transform with the inverse Fourier transform (IFT)

xðtÞ ¼ 1

2p

ð1

�1
XðoÞe jotdo: ð11:7Þ

These two representations of a signal are interchangeable, meaning that we can always go
back and forth between the time-domain version of the signal, x(t), and the frequency-domain
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FIGURE 11.11 Harmonic reconstruction of the aortic pressure waveform shown in Figure 11.2.
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version obtained with the Fourier transform, X(o). The frequency domain expression there-
fore provides all of the necessary information for the signal and allows one to analyze and
manipulate biological signals from a different perspective.

EXAMPLE PROBLEM 11.9

Find the Fourier Transform (FT) of the rectangular pulse signal

xðtÞ ¼ 1, tj j < a

0, tj j > a

Solution

Equation (11.6) is used.

XðoÞ ¼
ða

�a

e�jotdt ¼ e�jot

�jo

�����
a

�a

¼ 2 sin oa
o

As for the Fourier series representation of a signal, the magnitude and the phase are important

attributes of the Fourier transform. As stated previously, X(o) is a complex valued function,

meaning that it has a real, Re{X(o)}, and imaginary, Im{X(o)}, component and can be expressed as

XðoÞ ¼ RefXðoÞg þ j ImfXðoÞg: ð11:8Þ

As for the Fourier series, the magnitude determines the amplitude of each complex expo-
nential function (or equivalent cosine) required to reconstruct the desired signal, x(t), from
its Fourier transform

XðoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RefXðoÞg2 þ ImfXðoÞg2

q
ð11:9Þ

In contrast, the phase determines the time shift of each cosine signal relative to a reference
of time zero. It is determined as

yðoÞ ¼ tan�1 ImfXðoÞg
RefXðoÞg

� �
: ð11:10Þ

Note the close similarity for determining the magnitude and phase from the trigonometric
and compact forms of the Fourier series (Eqs. (11.4a, b, c)). The magnitude of the Fourier
transform, XðoÞj j, is analogous to Am, whereas am and bm are analogous to Re{X(o)} and
Im{X(o)}, respectively. The equations are identical in all other respects.

EXAMPLE PROBLEM 11.10

Find the magnitude and phase of the signal with the Fourier transform

XðoÞ ¼ 1

1þ jo

Continued
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Solution

The signal has to be put in a recognizable form similar to Eq. (11.8). To achieve this,

XðoÞ ¼ 1

1þ jo
� 1� jo
1� jo

¼ 1� jo
1þ o2

¼ 1

1þ o2
� j

o
1þ o2

:

Therefore

Re XðoÞf g ¼ 1

1þ o2
and ImfXðoÞg ¼ � o

1þ o2
:

Using Eqs. (11.9) and (11.10), the magnitude is

XðoÞj j ¼ 1

1þ o2

and the phase

yðoÞ ¼ tan�1ð�oÞ ¼ � tan�1ðoÞ:

11.5.5 Properties of the Fourier Transform

In practice, computing Fourier transforms for complex signals may be somewhat tedious
and time consuming. When working with real-world problems, it is therefore useful to have
tools available that help simplify calculations. The FT has several properties that help
simplify frequency domain transformations. Some of these are summarized following.

Let x1(t) and x2(t) be two signals in the time domain. The FTs of x1(t) and x2(t) are
represented as X1(o) ¼ F{x1(t)} and X2(o) ¼ F{x2(t)}.

Linearity

The Fourier transform is a linear operator. Therefore, for any constants a1 and a2,

Ffa1x1ðtÞ þ a2x2ðtÞg ¼ a1X1ðoÞ þ a2X2ðoÞ ð11:11Þ
This result demonstrates that the scaling and superposition properties defined for a liner
system also hold for the Fourier transform.

Time Shifting/Delay

If x1(t � t0) is a signal in the time domain that is shifted in time, the Fourier transform can
be represented as

Ffx1ðt� t0Þg ¼ XðoÞ � e�jo � t0 ð11:12Þ
In other words, shifting a signal in time corresponds to multiplying its Fourier transform by
a phase factor, e�jot0.

Frequency Shifting

If X1(o�o0) is the Fourier transform of a signal, shifted in frequency, the inverse Fourier
transform is

F�1 X1 o� o0ð Þf g ¼ x tð Þ � e�jo0t ð11:13Þ
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Convolution Theorem

The convolution between two signals, x1(t) and x2(t), in the time domain is defined as

cðtÞ ¼
ð1

�1
x1ðtÞx2ðt� tÞdt ¼ x1ðtÞ * x2ðtÞ ð11:14Þ

where * is shorthand for the convolution operator. The convolution has an equivalent
expression in the frequency domain

C oð Þ ¼ F c tð Þf g ¼ F x1 tð Þ * x2 tð Þf g ¼ X1 oð Þ � X2 oð Þ: ð11:15Þ
Convolution in the time domain, which is relatively difficult to compute, is a straightfor-
ward multiplication in the frequency domain.

Next, consider the convolution of two signals, X1(o) and X2(o), in the frequency domain.
The convolution integral in the frequency domain is expressed as

XðoÞ ¼
ð1

�1
X1ðnÞX2ðo� nÞdn ¼ X1ðoÞ *X2ðoÞ ð11:16Þ

It can be shown that the inverse Fourier transform (IFT) of X(o) is

x tð Þ ¼ F�1 X oð Þf g ¼ F�1 X1 oð Þ *X2 oð Þf g ¼ 2p � x1 tð Þ � x2 tð Þ ð11:17Þ
Consequently, the convolution of two signals in the frequency domain is 2p times the prod-
uct of the two signals in the time domain. As we will see subsequently for linear systems,
convolution is an important mathematical operator that fully describes the relationship
between the input and output of a linear system.

EXAMPLE PROBLEM 11.11

What is the FT of 3 sin (25t) þ 4 cos (50t)? Express your answer only in a symbolic equation.

Do not evaluate the result.

Solution

Ff3 sin ð25tÞ þ 4 cos ð50tÞg ¼ 3Ff sin ð25tÞg þ 4Ff cos ð50tÞg

11.5.6 Discrete Fourier Transform

In digital signal applications, continuous biological signals are first sampled by an
analog-to-digital converter (see Figure 11.4) and then transferred to a computer, where they
can be further analyzed and processed. Since the Fourier transform applies only to contin-
uous signals of time, analyzing discrete signals in the frequency domain requires that we
first modify the Fourier transform equations so they are structurally compatible with the
digital samples of a continuous signal.
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The discrete Fourier transform (DFT)

XðmÞ ¼
XN�1

k¼0

xðkÞe�j
2pmk
N ;m ¼ 0, 1, . . . ,N=2 ð11:18Þ

provides the tool necessary to analyze and represent discrete signals in the frequency
domain. The DFT is essentially the digital version of the Fourier transform. The index m
represents the digital frequency index, x(k) is the sampled approximation of x(t), k is the dis-
crete time variable, N is an even number that represents the number of samples for x(k), and
X(m) is the DFT of x(k).

The inverse discrete Fourier transform (IDFT) is the discrete-time version of the inverse
Fourier transform. The inverse discrete Fourier transform (IDFT) is represented as

xðkÞ ¼ 1

N

XN�1

m¼0

XðmÞe j
2pmk
N ; k ¼ 0, 1, . . . ,N � 1 ð11:19Þ

As for the FT and IFT, the DFT and IFT represent a Fourier transform pair in the discrete
domain. The DFT allows one to convert a set of digital time samples to its frequency
domain representation. In contrast, the IDFT can be used to invert the DFT samples, allow-
ing one to reconstruct the signal samples x(k) directly from its frequency domain form,
X(m). These two equations are thus interchangeable, since either conveys all of the signal
information.

EXAMPLE PROBLEM 11.12

Find the discrete Fourier transform of the signal xðkÞ ¼ 0:25k for k ¼ 0:15

XðmÞ ¼
XN�1

k¼0

xðkÞe�j
2pmk
N ¼

X15
k¼0

0:25ke�j
2pmk
16 ¼

X15
k¼0

0:25 � e�j
2pm
N

� �k

¼
X15
k¼0

ak

Note that the preceding is a geometric sum in which a ¼ 0:25 � e�j2pmN . Since for a geometric sum

XN
k¼M

ak ¼ aNþ1 � aM

a� 1

we obtain

XðmÞ ¼ a16 � a0

a� 1
¼ 0:2516e�j

32mp
N � 1

0:25e�j
2mp
N � 1

An efficient computer algorithm for calculating the DFT is the fast Fourier transform (FFT). The

output of the FFT and DFT algorithms are the same, but the FFT has a much faster execution time

than the DFT (proportional to N � log2ðNÞ versus N2 operations). The ratio of computing time for

the DFT and FFT is therefore

DFT computing time

FFT computing time
¼ N2

N � log2N
¼ N

log2N
ð11:20Þ
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In order for the FFT to be efficient, the number of data samples, N, must be a power of two.

If N ¼ 1024 signal samples, the FFT algorithm is approximately 1024= log2ð1024Þ ¼ 10 times faster

than the direct DFT implementation. If N is not a power of two, alternate DFT algorithms are

usually used.

Figures 11.12 and 11.13 show two signals and the corresponding DFT, which was
calculated using the FFT algorithm. The signal shown in Figure 11.12a is a sine wave
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FIGURE 11.12 (a) 100 Hz sine wave. (b) Fast Fourier transform (FFT) of 100 Hz sine wave.
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of frequency of 100 Hz. Figure 11.12b shows the FFT of the 100 Hz sine wave. Notice that
the peak of the FFT occurs at 100 Hz frequency, indicating that all of the energy is confined
to this frequency. Figure 11.13a shows a 100 Hz sine wave corrupted with random
noise that was added to the waveform. The frequency of the signal is not distinct in
the time domain. After transforming this signal to the frequency domain, the signal
(Figure 11.13b) reveals a definite component at 100 Hz frequency, which is marked by the
large peak in the FFT.
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FIGURE 11.13 (a) 100 Hz sine wave corrupted with noise. (b) Fast Fourier transform (FFT) of noisy 100 Hz sine
wave.
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EXAMPLE PROBLEM 11.13

Find and plot the magnitude of the discrete Fourier transform of the signal x nð Þ ¼ sinðp=4 � nÞ þ
2 � cosðp=3 � nÞ in MATLAB.

Solution

n¼1:1024; %Discrete Time Axis
x¼sin(pi/4*n)þ2*cos(pi/3*n); %Generating the signal
X¼fft(x,1024*16)/1024; %Computing 16k point Fast Fourier Transform
Freq¼(1:1024*16)/(1024*16)*2*pi; %Normalizing Frequencies
between 0-2*pi
plot(Freq,abs(X),’k’) %Plotting
axis([0.7 1.15 0 1.2])
xlabel(’Frequency (rad/s)’)
ylabel(’Fourier Magnitude’)

Results are shown in Figure 11.14.

11.5.7 The z-Transform

The z-transform provides an alternative tool for analyzing discrete signals in the frequency

domain. This transform is essentially a variant of the DFT, where we allow z ¼ e�j
2pm
N .
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FIGURE 11.14 Fast Fourier transform magnitude for the sum of two sinusoids. Dominant energy peaks are
located at the signal frequencies p/3 and p/4 rad/s.
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In most applications, the z-transform is somewhat easier to work with than the DFT
because it does not require the use of complex numbers directly. The z-transform plays
a similar role for digital signals as the Laplace transform does for the analysis of continu-
ous signals.

If a discrete sequence x(k) is represented by xk , the (one-sided) z-transform of the discrete
sequence is expressed by

XðzÞ ¼
X1
k¼0

xkz
�k ¼ x0 þ x1z

�1 þ x2z
�2 þ Kþ xkz

�k ð11:21Þ

Note that the z-transform can be obtained directly from the DFT by allowing N ! 1 and

replacing z ¼ e�j
2pm
N in Eq. (11.18). In most practical applications, sampled biological

signals are represented by a data sequence with N samples so the z-transform is estimated
for k ¼ 0 . . . N-1 only. Tables of common z-transforms and their inverse transforms can be
found in most digital signal processing textbooks.

After a continuous signal has been sampled into a discrete sequence, its z-transform is
found quite easily. Since the data sequence of a sampled signal is represented as

x ¼ ½xð0Þ, xðTÞ, xð2TÞ, . . . , xðkTÞ� ð11:22Þ

its z-transform is obtained by applying Eq. (11.21) to its samples

XðzÞ ¼ xð0Þ þ xðTÞz�1 þ xð2TÞz�2 þ . . .þ xðkTÞz�k ð11:23Þ

where T is the sampling period or sampling interval.

A sampled signal is a data sequence with each sample separated from its neighboring
samples by precisely one sampling period. In the z-transform, the value of the multi-
plier, x(kT), is the value of the data sample. The terms z�k have an intuitive graphical
explanation. The power, k, corresponds to the number of sampling periods following
the start of the sampling process at time zero; z�k can therefore be thought of as a
“shift operator” that delays the sample by exactly k sampling periods or kT. The variable
z�1, for instance, represents a time separation of one period, T, following the start of the
signal at time zero. In Eq. (11.18), z(0) is the value of the sampled data at t ¼ 0, and x(T)
is the value of the sampled data that was obtained after the first sampling period.
The z-transform is an important method for describing the sampling process of an
analog signal.

EXAMPLE PROBLEM 11.14

The discrete unit impulse function is represented as the sequence x ¼ [1, 0, 0, 0, . . . , 0]. Find the

z-transform of this sequence.

Solution

XðzÞ ¼ 1þ 0z�1 þ 0z�2 þ . . .þ 0z�k ¼ 1þ 0þ 0þ . . .þ 0 ¼ 1
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EXAMPLE PROBLEM 11.15

An A/D converter is used to convert a recorded signal of the electrical activity inside a nerve

into a digital signal. The first five samples of the biological signal are [�60.0, �49.0, �36.0, �23.0,

�14.0] mV. What is the z-transform of this data sequence? How many sample periods after the

start of the sampling process was the data sample –23.0 recorded?

Solution

YðzÞ ¼ �60:0� 49:0z�1 � 36:0z�2 � 23:0z�3 � 14:0z�4

The value of the negative exponent of the �23.0 mV z-term is 3. Therefore, the data sample with

the value of �23.0 was recorded 3 sampling periods after the start of sampling.

11.5.8 Properties of the z-Transform

The z-transform obeys many of the same rules and properties that we’ve already shown
for the Fourier transform. These properties can significantly simplify the process of evalu-
ating z-transforms for complex signals. The following are some of the properties of the
z-transform. Note the close similarity to the properties for Eqs. (11.11), (11.12), and (11.14).
Let x1(k) and x2(k) be two digital signals with corresponding z-transforms X1(z) and X2(z).

Linearity:
The z-transform is a linear operator. For any constants a1 and a2,

Zfa1x1ðkÞ þ a2x2ðkÞg ¼
X1
k¼0

½a1x1ðkÞ þ a2x2ðkÞ�z�k ¼ a1X1ðzÞ þ a2X2ðzÞ ð11:24Þ

Delay:
Let x1(k – n) be the original signal that is delayed by n samples. The z-transform of the
delayed signal is

Zfx1ðk� nÞg ¼
X1
k¼0

x1ðk� nÞz�k ¼
X1
k¼0

x1ðkÞz�ðkþnÞ ¼ z�nX1ðzÞ ð11:25Þ

As described previously, note that the operator z�n represents a shift of n samples or
precisely nT seconds.

Convolution:
Let x(k) be the discrete convolution between x1(k) and x2(k),

xðkÞ ¼ x1ðkÞ * x2ðkÞ
X(z), the z-transform of x(k), is calculated as

XðzÞ ¼ ZfxðkÞg ¼ X1ðzÞX2ðzÞ ð11:26Þ
As with the Fourier transform, this result demonstrates that convolution between two
sequences is performed by simple multiplication in the z-domain.
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11.6 LINEAR SYSTEMS

A system is a process, machine, or device that takes a signal as an input and manipulates
it to produce an output that is related to, but is distinctly different from, its input.
Figure 11.15 shows a system block diagram.

Biological systems and organs are very often modeled as systems. The heart, for instance,
is a large-scale system that takes oxygen-deficient blood from the veins (the input) and
pumps it through the lungs. This produces a blood output via the main arteries of the heart
that is rich in oxygen content. Neurons in the brain can also be thought of as a simple
microscopic system that takes electrical nerve impulses from various neurons as the input
and sums these impulses to produce action potentials: the output. Linear systems are a spe-
cial class of systems with a unique set of properties that make them easy to analyze.

11.6.1 Linear System Properties

While biological systems are not per se linear, very often they can be approximated by a
linear system model. This is desired because it makes their analysis and the subsequent
interpretation more tractable.

All linear systems are characterized by the principles of superposition (or additivity)
and scaling. The superposition property states that the sum of two independent inputs
produces an output that is the sum or superposition of the outputs for each individual
input. The scaling property tells us that a change in the size of the input produces a com-
parable change at the output. Mathematically, if we know the outputs for two separate
inputs—that is,

{}.fx(t )

x(t ) h(t )

{x(t )})( fty =

Input Output

)(*)()( thtxty =

Input Output

Input Output

H(ω)X(ω) Y (ω) = X(ω) H(ω)

(a)

(b)

(c)

FIGURE 11.15 (a) Block diagram representation of a system. The input signal, x(t), passes through the system
transformation ff�g to produce an output, y(t). (b) Time domain representation of a linear system. The output of the
linear system is represented by the convolution of the input and impulse response. (c) Frequency domain repre-
sentation of a linear system. The output corresponds to the product of the input and the system transfer function.
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Input Output
x1ðtÞ ! y1ðtÞ
x2ðtÞ ! y2ðtÞ,

we can easily determine the output of a linear system to any arbitrary combination of these
inputs. More generally, a linear superposition and scaling of the input signals produces a
linear superposition and scaling of the output signals

Input Output
k1 � x1ðtÞ þ k2 � x2ðtÞ ! k1 � y1ðtÞ þ k2 � y2ðtÞ ð11:27Þ

where k1 and k2 are arbitrary amplitude scaling constants. These constants scale the input
amplitudes by making them larger (k > 1) or smaller (k < 1). This produces a comparable
change in the net outputs, which are likewise scaled by the same constants.

EXAMPLE PROBLEM 11.16

The following information is given for a linear system

Input Output

x1ðtÞ ¼ cosðtÞ ! y1ðtÞ ¼ cosðtþ p=2Þ
x2ðtÞ ¼ cosðtÞ þ sinð2tÞ ! y2ðtÞ ¼ cosðtþ p=2Þ þ 5 sinð2tÞ
x3ðtÞ ¼ cosð3tÞ ! y3ðtÞ ¼ 2 cosð3tÞ

Find the output if the input is: xðtÞ ¼ 3 sinð2tÞ þ 1=2 cosð3tÞ

Solution

The input is represented as a superposition of x1, x2, and x3

xðtÞ ¼ 3 x2ðtÞ � x1ðtÞð Þ þ 1=2x3ðtÞ ¼ 3x2ðtÞ � 3x1ðtÞ þ 1=2x3ðtÞ
Applying the superposition and scaling properties produces an output

yðtÞ ¼ 3y2ðtÞ � 3y1ðtÞ þ 1=2y3ðtÞ ¼ 3 cosðtþ p=2Þ þ 5 sinð2tÞð Þ � 3 cosðtþ p=2Þð Þ þ 1=2 2 cosð3tÞð Þ
¼ 15 � sinð2tÞ þ cosð3tÞ

EXAMPLE PROBLEM 11.17

Consider the system given by the expression

yðtÞ ¼ f xðtÞf g ¼ A � xðtÞ þ B:

Determine if this is a linear system.

Solution

To solve this problem, consider a superposition of two separate inputs, x1(t) and x2(t), that

independently produce outputs y1(t) and y2(t). Apply the input xðtÞ ¼ k1 � x1ðtÞ þ k2 � x2ðtÞ. If the
system is linear, the output obeys

Continued
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yLinðtÞ ¼ k1 � y1ðtÞ þ k2 � y2ðtÞ ¼ k1 � A � x1ðtÞ þ Bð Þ þ k2 � A � x2ðtÞ þ Bð Þ
¼ A k1 � x1ðtÞ þ k2 � x2ðtÞð Þ þ k1 þ k2ð ÞB

The true system output, however, is determined as

yðtÞ ¼ f xðtÞf g ¼ f k1 � x1ðtÞ þ k2 � x2ðtÞf g ¼ A � ðk1 � x1ðtÞ þ k2 � x2ðtÞÞ þ B

We need to compare our expected linear system output, ylin(t), with the true system output,

y(t). Note that yðtÞ 6¼ yLinðtÞ, and therefore the system is not linear.

The superposition principle takes special meaning when applied to periodic signals.
Because periodic signals are expressed as a sum of cosine or complex exponential functions
with the Fourier series, their output must also be expressed as a sum of cosine or exponen-
tial functions. Thus, if a linear system is stimulated with a periodic signal, its output is also
a periodic signal with identical harmonic frequencies. The output, y(t), of a linear system to
a periodic input, x(t), is related by

Input Output

xðtÞ ¼ A0

2
þ

Xþ1

m¼�1
Am cosðmo0tþ fmÞ ) xðtÞ ¼ B0

2
þ

Xþ1

m¼�1
Bm cosðmo0tþ ymÞ ð11:28Þ

meaning the input and output contain cosines with identical frequencies, mo0, and are
expressed by equations with similar form. A similar form of this expression is also obtained
for the exponential Fourier series:

Input Output

xðtÞ ¼
Xþ1

m¼�1
cme

jmo0t ) yðtÞ ¼
Xþ1

m¼�1
bme

jmo0t ð11:29Þ

where the input and output coefficients, cm and bm, are explicitly related to Am and Bm via
Eq. (11.5b).

FromEqs. (11.28) and (11.29) the input and output of a linear system to a periodic input dif-
fer in two distinct ways. First the amplitudes of each cosine are selectively scaled by different
constants,Am for the input and Bm for the output. These constants are uniquely determined by
the linear system properties. Similarly, the phases angle of the input components, fm, are dif-
ferent from the output components, ym, meaning that the input and output components are
shifted in time in relationship to each other. As for the amplitudes, the phase difference
between the input and output is a function of the linear system. Thus, if we know the mathe-
matical relationship of how the input components are amplitude scaled and phase shifted
between the input and output, we can fully describe the linear system. This relationship is
described by the system transfer function, Hm. The transfer function fully describes how the
linear systemmanipulates the amplitude and phases of the input to produce a specific output.
This transformation is described by two separate components: the magnitude and the phase.

The magnitude of Hm is given by the ratio of the output to the input for the m-th
component

Hmj j ¼ Bm

Am
ð11:30Þ

702 11. BIOSIGNAL PROCESSING



Note that if we know the input magnitudes, we can determine the output Fourier coeffi-
cients by multiplying the transfer function magnitude by the input Fourier coefficients:
Bm ¼ Hmj j � Am. The phase angle of the transfer function describes the phase relationship
between the input and output for the m-th frequency component

∠Hm ¼ ym � fm: ð11:31Þ
If we know the input phase, the output phase is determined as ym ¼ ∠Hm þ fm.

Equations (11.30) and (11.31) are the two critical pieces of information that are necessary
to fully describe a linear system. If these two properties of the transformation are known,
it is possible to determine the output for any arbitrary input.

11.6.2 Time Domain Representation of Linear Systems

The relationship between the input and output of a linear system can be described by
studying its behavior in the time domain (Figure 11.15b). The impulse response function,
h(t), is a mathematical description of the linear system that fully characterizes its behavior.
As we will see subsequently, the impulse response of a linear system is directly related to
the system transfer function as outlined for the periodic signal. If one knows h(t), one can
readily compute the output, y(t), to any arbitrary input, x(t), using the convolution integral

yðtÞ ¼ hðtÞ * xðtÞ ¼
ð1

�1
hðtÞxðt� tÞdt: ð11:32Þ

The symbol * is shorthand for the convolution between the input and the system impulse
response. Integration is performed with respect to the dummy integration variable t. For
the discrete case, the output of a discrete linear system is determined with the convolution
sum

yðkÞ ¼ hðkÞ * xðkÞ ¼
X1

m¼�1
hðmÞxðk�mÞ ð11:33Þ

where h(m) is the impulse response of the discrete system. A detailed treatment of the
convolution integral is found in many signal processing textbooks and is beyond the scope
of this text. As shown in a subsequent section, a simpler treatment of the input-output
relationship of a linear system is obtained by analyzing it in the “frequency-domain.”

EXAMPLE PROBLEM 11.18

A cytoplasmic current injection iðtÞ ¼ uðtÞ to a cell membrane produces an intracellular

change in the membrane voltage, v(t). The membrane of a cell is modeled as a linear system with

impulse response hðtÞ ¼ A � e�t=t � uðtÞ, where A is a constant in units V/s/A and t is the cell

membrane time constant (units: seconds). Find the cell membrane voltage output in closed form.

Simulate in MATLAB, for A ¼ 100 and t ¼ 0.01 sec. Compare the closed form solution to the

simulated results.

Continued
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Solution

The input, i(t), and output, v(t), are related by the convolution integral (Eq. (11.32)):

vðtÞ ¼ hðtÞ * iðtÞ ¼
ð1

�1
hðBÞiðt� BÞdB ¼

ð1

�1
A � e�B=tuðBÞuðt� BÞdB

where we use a dummy integration variable, B, to distinguish it from the cell time constant, t. The
unit step functions inside the integral take values of one or zero—in which case they do not con-

tribute to the integral. uðBÞ ¼ 1 if B > 0 and uðt� BÞ ¼ 1 if t� B > 0. Combining these two inequal-

ities, we have that uðt� BÞ � uðBÞ ¼ 1 whenever 0 < B < t, and we can therefore change the limits of

integration and replace the unit step function with 1:

vðtÞ ¼
ðt

0

A � e�B=tdB ¼ A � t � 1� e�t=t
	 


: :

MATLAB Solution
%Theoretical Result
dt¼0.0001; %Sampling Resolution
Fs¼1/dt; %Sampling Rate
time¼0:dt:5; %5-second time-axis
Tau¼0.1; %Cell Membrane Time Constant
A¼10;
y¼A*Tau*(1-exp(-time/Tau)); %Closed Form Output Equantion
plot(time,y,’color’,[.75 .75 .75],’linewidth’,3) %Plotting
Theoretical Output
hold on

%Simulated Output
h¼A*exp(-time/Tau); %Impulse Response
x¼[zeros(1,Fs) ones(1,Fs*4)]; %Step Input
y¼conv(h,x)*dt; %Step Response, obtained by convolving: y¼h*x

%Plotting Simulated Results
time¼(0:length(x)-1)*dt-1;
plot(time,x,’k-.’) %Plotting Input
hold on
time¼(0:length(y)-1)*dt-1;
plot(time,y,’k’) %Plotting Output
axis([-1 1 0 1.2])
xlabel(’time (sec)’,’fontsize’,14)
ylabel(’Amplitude’,’fontsize’,14)
set(gca,’XTick’,[-1 -0.5 0 0.5 1 ])
set(gca,’YTick’,[0:.2:1.2])
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The results for the cell membrane step response are shown in Figure 11.16. Note that the

simulated (black) and theoretical (gray) outputs are precisely matched.

11.6.3 Frequency Domain Representation of Linear Systems

We have already considered the special case of linear systems in the frequency domain
for periodic inputs. Recall that the system output of a linear system to a periodic stimulus
is fully described by the system transfer function. The output of a linear system is also
expressed in the time domain by the convolution integral (Figure 11.15b). The impulse
response is the mathematical model that describes the linear system in the time domain.
These two descriptions for the input-output relationship of a linear system are mutually
related. Notably, for the aperiodic signal case, the transfer function is the Fourier transform
of the impulse response

Time Domain Frequency Domain
hðtÞ , HðoÞ ð11:34Þ

where H(o) is the system transfer function. Since the impulse response is a complete model
of a linear system and since the Fourier transform is invertible (we can always go back and
forth between h(t) and H(o)), the transfer function contains all the necessary information to
fully describe the system. The advantage of the transfer function comes in its simplicity of
use. Rather than performing a convolution integral, which can be quite intricate in many
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FIGURE 11.16 MATLAB results showing the step response of a linear cell membrane. Dotted lines repre-
sent the step input. Continuous gray line shows the theoretical step response. Black line shows the simulated
step response. Note that the theoretical solution and simulated results are superimposed.
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applications, the output of a linear system in the frequency domain is expressed as a prod-
uct of the system input and its transfer function: YðoÞ ¼ XðoÞHðoÞ. This result is reminis-
cent of the result for the Fourier series (Eqs. (11.30) and (11.31)). Specifically, the
convolution property of the Fourier transform states that a convolution in time corresponds
to a multiplication in the frequency domain

Time Domain Frequency Domain
yðtÞ ¼ xðtÞ * hðtÞ , YðoÞ ¼ XðoÞHðoÞ ð11:35Þ

and thus the output of a linear system, Y(o), is expressed in the frequency domain by the
product of X(o) and H(o) (Figure 11.15c). Note that this result is essentially the convolution
theorem (Eqs. (11.14) and (11.15); for proof, see Example Problem 11.19) applied to the out-
put of a linear system (Eq. (11.32)). In many instances, this is significantly easier to compute
than a direct convolution in the time domain.

EXAMPLE PROBLEM 11.19

Prove the convolution property of the Fourier transform.

Solution

YðoÞ ¼ FT yðtÞf g ¼
ð
yðtÞe�jotdt ¼

ð ð
xðtÞhðt� tÞdte�jotdt

Make a change of variables, u ¼ t� t, du ¼ dt

¼
ð ð

xðtÞhðuÞdte�joðuþtÞdu ¼
ð
xðtÞe�jotdt �

ð
hðuÞe�joudu ¼ XðoÞHðoÞ

11.6.4 Analog Filters

Filters are a special class of linear systems that are widely used to manipulate the proper-
ties of a biological signal. Conceptually, a filter allows the user to selectively remove an
undesired signal component while preserving or enhancing some component of interest.
Although most of us are unaware of this, various types of filters are commonplace in every-
day settings. Sunblock, for instance, is a type of filter that removes unwanted ultraviolet
light from the sun in order to minimize the likelihood of sunburn and potentially reduce
the risk of skin cancer. Filters are also found in many audio applications. Treble and bass
controls in an audio system are a special class of filter that the user selectively adjusts to
boost or suppress the amount of high-frequency (treble) and low-frequency (bass) sound
to a desired level and quality.

Filters play an important role in the analysis of biological signals, in part because
signal measurements in clinical settings are often confounded by undesirable noise.
Such noise distorts the signal waveform of interest, making it difficult to obtain a reliable
diagnosis. Ideally, if one could completely remove unwanted noise, one could signifi-
cantly improve the quality of a signal and thus minimize the likelihood of an incorrect
diagnosis.
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Practically, most filters can be subdivided into three broad classes, according to how they
modify the frequency spectrum of the desired signal. These broad classes include low-pass,
high-pass, and band-pass filters. Low-pass filters work by removing high frequencies from a
signal while selectively keeping the low frequencies (Figure 11.17a). This allows the low
frequencies of the signal to pass through the filter uninterrupted, hence the name low-pass.
In some instances, low frequencies could be accentuated further by magnifying them while
selectively removing the high frequencies. High-pass filters perform exactly the opposite
function of a low-pass filter (Figure 11.17b). They selectively pass the high frequencies
but remove the low frequencies of the signal. The treble control in an audio system is a form
of high-pass filter that accentuates the high frequencies, thus producing crisp and rich
sound. In contrast, the bass control is a form of low-pass filter that selectively enhances
low frequencies or the “bass,” creating a “warmer” sound quality. Band-pass filters fall
somewhere in between the low-pass and high-pass filter. Rather than simply removing
the low or high frequencies, band-pass filters remove both high and low frequencies but
selectively keep a small “band” of frequencies (Figure 11.17c), hence the name. The function
of a band-pass filter could be achieved by simply combining a low-pass and high-pass fil-
ter, as we will see subsequently.

Since filters are linear systems, the output of a filter is expressed by the convolution
between the input and the filter’s impulse response (Eq. (11.32)). Conversely, if the output
is determined in the frequency domain, the output corresponds to the product of the filter

wc−wc

wc−wc

w1 w2−w1−w2

Passband

Passband

StopbandStopband

Stopband

Passband

Passband Passband

Stopband StopbandStopband

(a)

1

1

0

0

1

0

H (ω)

(b)

H (ω)

(c)

H (ω)

ω

ω

ω

FIGURE 11.17 Frequency domain magnitude response plot, H (oÞj j, of the ideal (a) low-pass filter, (b) high-
pass filter, and (c) band-pass filter. Signals in the shaded region, the passband, are preserved at the output, whereas
signals in the stopband are selectively removed from the output.
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transfer function and the input Fourier transform (Eq. (11.35)). The impulse response and
transfer function of the ideal low-pass filter are shown in Figure 11.18. The transfer func-
tion of this filter takes a value of one within the filter passband and zero within the
stopband.

Since the output of a linear system in the frequency domain is given as the product
of the input Fourier transform and the signal transfer function, YðoÞ ¼ HðoÞXðoÞ,
any signal presented to this filter within its passband will pass through to the output
uninterrupted because the frequency components are multiplied by one. In contrast,
signals in the stopband are removed at the output of the filter, since the frequency
components are multiplied by zero. The impulse response of the ideal low-pass analog
filter is

hLPðtÞ ¼ Wc

p
sincðWctÞ: ð11:36Þ

where Wc ¼ 2pfc is the filter cutoff frequency. In the frequency domain, the ideal low-pass
filter transfer function is

HLPðoÞ ¼ 1
0

oj j < Wc

oj j > Wc
:

�
ð11:37Þ

This dual time and frequency domain representation of the ideal low-pass filter is shown in
Figure 11.18. Note that the transfer function takes a value of one only within the passband.
At the cutoff frequency, the filter transfer function transitions from a value of one in the
passband to a value of zero in the stopband.

In the frequency domain, the ideal high-pass filter performs the exact opposite function
of the low-pass filter

HHPðoÞ ¼ 0
1

oj j < Wc

oj j > Wc
,

�
ð11:38Þ

that is, the passband exists for frequencies above the cutoff frequency, whereas the
stopband exists for frequencies below the filter’s cutoff. This filter therefore preserves
high-frequency signal components (above the cutoff frequency) and selectively removes
low-frequency signals. The ideal high-pass filter transfer function can be easily derived
from the ideal low-pass filter as

HHPðoÞ ¼ 1�HLPðoÞ ð11:39Þ
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FIGURE 11.18 Time and frequency domain representation of the ideal low-pass filter. (a) The impulse
response of the ideal low-pass filter, h(t). (b) Transfer function of the ideal low-pass filter, H(o).

708 11. BIOSIGNAL PROCESSING



In the time domain, the ideal high-pass filter impulse response is obtained as

hHPðtÞ ¼ dðtÞ � hLPðtÞ ¼ dðtÞ �Wc

p
sinc Wctð Þ ð11:40Þ

A schematic depiction of the ideal high-pass filter transfer function is shown in
Figure 11.17b.

The final class of filter we will consider is the band-pass filter. The prototypical band-pass
filter is somewhat more complex than the low-pass and high-pass filters, since it requires the
definition of a lower and upper cutoff frequency, W1 and W2. Figure 11.17c illustrates the
magnitude response of the ideal band-pass filter transfer function and impulse response.
Only signals between the two cutoff frequencies are allowed to pass through to the output.
All other signals are rejected. The transfer function of the ideal band-pass filter is given by

HHPðoÞ ¼ 0
1

W1 < oj j < W2,
otherwise

�
ð11:41Þ

In the frequency domain, the ideal band-pass filter can be obtained by combining a high-
pass filter with cutoff W1 and a low-pass filter with cutoff W2. The band-pass filter transfer
function can therefore be expressed as the product of transfer functions for a low-pass and
high-pass filter:

HBPðoÞ ¼ HHPðoÞ � HLPðoÞ: ð11:42Þ
In the time domain, the band-pass filter impulse response is obtained by the inverse Fourier
transform of the filter transfer function

hBPðtÞ ¼ hHPðtÞ * hLPðtÞ: ð11:43Þ
This is done by applying the convolution theorem (Eqs. (11.14) and (11.15)) to Eq. (11.42).

EXAMPLE PROBLEM 11.20

Consider the cell membrane cytoplasmic current injection for Example Problem 11.18. Find the

cell’s output voltage in the Fourier domain. Also, compute and plot in MATLAB the transfer func-

tion magnitude of the cell membrane. What type of filter is this?

Solution

The Fourier transform of the step current input is

IðoÞ ¼
ð
iðtÞe�jotdt ¼

ð1

0

1 � e�otdt ¼ e�ot

�jo

�����
1

0

¼ 1

jo

The transfer function is determined as the Fourier transform of the impulse response

HðoÞ ¼ FT hðtÞf g ¼
ð
A � e�t=t � uðtÞdt ¼

ð1

0

A � e�t=te�jotdt ¼ A

joþ 1=t

Continued
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The cell’s voltage output in the frequency domain is determined as

VðoÞ ¼ HðoÞIðoÞ ¼ A

joþ 1=t
� 1

jo
¼ A

jo
� A

joþ 1=t

Next, using the derived transfer function, the transfer function magnitude is obtained as

HðoÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðoÞ � HðoÞ *

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

joþ 1=t
� A

�joþ 1=t

s
¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 þ 1=t2
p

where H(o)* is the complex conjugate transfer function. In MATLAB the transfer function magni-

tude is plotted as follows:

%Cell Membrane Magnitude Response
tau¼0.01;
A¼1/tau^2;
w¼0:0.1:500;
H¼A./(w.^2þ1/tau^2);
plot(w/2/pi,H,’k’)
axis([0 500/2/pi 0 1.2])
xlabel(’Frequency (Hz)’)
ylabel(’Magnitude’)

The results are shown in Figure 11.19. Note that the transfer function tends to preserve the low

frequencies while rejecting the high frequencies. Thus, the cell membrane behaves like a low-pass

filter.
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FIGURE 11.19 Cell membrane transfer function magnitude. Note that the cell behaves like a low-pass filter.
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EXAMPLE PROBLEM 11.21

An electromyographic (EMG) signal contains energy within the frequencies 25 and 100 Hz.

Design a filter to remove unwanted noise.

Solution

We need to design a band-pass filter with passband frequencies 25 and 100 Hz. First determine

the cutoff frequencies in rad/s. Since Wc ¼ 2pfc,

W1 ¼ 50p

W2 ¼ 200p

Next, we find the impulse response of the corresponding low-pass and high-pass filters:

hHPðtÞ ¼ dðtÞ �W1

p
sinc W1tð Þ ¼ dðtÞ � 50 sinc 50ptð Þ

hLPðtÞ ¼ W2

p
sinc W2tð Þ ¼ 200 sinc 200ptð Þ

The band-pass filter impulse response is

hBPðtÞ ¼ hBPðtÞ * hLPðtÞ ¼ dðtÞ � 50 sinc 50ptð Þ½ � * 200 sinc 200ptÞð

The described ideal analog filters provide a conceptual reference for various filter design
applications. In practice, real analog filters cannot be implemented to achieve the strict
specifications of the ideal filter because the impulse response of ideal filters is of infinite
duration (extends from �1 to þ1). Thus, the ideal filters require that one integrate over
an infinite amount of time to produce an output. Typically, most analog filters are designed
with simple electronic circuits. Various approximations to the ideal low-pass, high-pass,
and band-pass filter can be derived that are well suited for a variety of applications,
including signal analysis of biomedical signals.

11.6.5 Digital Filters

Digital systems are described by difference equations, just like analog systems are
described by differential equations. Difference equations are essentially discretized differ-
ential equations that have been sampled at a particular sampling rate. The general form
of a real-time digital filter/difference equation is

yðkÞ ¼
XM
m¼0

bmxðk�mÞ �
XN
m¼1

amyðk�mÞ ð11:44Þ

where the discrete sequence x(k) corresponds to the input and y(k) represents the output
sequence of the discrete system. For instance, if M ¼ 2 and N ¼ 2, then

yðkÞ ¼ b0xðkÞ þ b1xðk� 1Þ þ b2xðk� 2Þ � a1yðk� 1Þ � a2yðk� 2Þ
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where x(k) and y(k) represent the input and output at time k, x(k�1) and y(k�1) represent
the input and output one sample into the past, and similarly, x(k�2) and x(k�2) correspond
to the input and output two samples into the past.

Digital systems, like analog systems, can also be defined by their impulse responses, h(k),
and the convolution sum (Eq. (11.33)). If the response has a finite number of nonzero points,
the filter is called an FIR filter or a “finite impulse response filter.” If the response has an
infinite number of nonzero points, the filter is called an IIR or “infinite impulse response
filter.” One positive quality of digital filters is the ease with which the output for any input
can be calculated.

EXAMPLE PROBLEM 11.22

Find the impulse response for the digital filter

yðkÞ ¼ 1

2
xðkÞ þ 1

2
yðk� 1Þ

Solution

Assume the system is at rest before input begins—that is, y(n) ¼ 0 for n < 0.

yð�2Þ ¼ 1

2
dð�2Þ þ 1

2
yð�3Þ ¼ 0þ 0 ¼ 0

yð�1Þ ¼ 1

2
dð�1Þ þ 1

2
yð�2Þ ¼ 0þ 0 ¼ 0

yð0Þ ¼ 1

2
dð0Þ þ 1

2
yð�1Þ ¼ 1

2
þ 0 ¼ 1

2

yð1Þ ¼ 1

2
dð1Þ þ 1

2
yð0Þ ¼ 0þ 1

2

1

2

� �
¼ 1

2

� �2

yð2Þ ¼ 1

2
dð2Þ þ 1

2
yð1Þ ¼ 0þ 1

2

1

2

� �2

¼ 1

2

� �3

yð3Þ ¼ 1

2
dð3Þ þ 1

2
yð2Þ ¼ 0þ 1

2

1

2

� �3

¼ 1

2

� �4

. . . .

yðkÞ ¼ 1

2

� �kþ1

uðkÞ

The impulse response for the filter is an exponential sequence. This is an IIR filter because the

impulse response is of infinite duration.
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EXAMPLE PROBLEM 11.23

Find the impulse response for the digital filter

yðkÞ ¼ 1

3
xðkÞ þ 1

3
xðk� 1Þ þ 1

3
xðk� 2Þ

Solution

Assume the system is at rest before input begins—that is, y(n) ¼ 0 for n < 0.

yð�2Þ ¼ 1

3
dð�2Þ þ 1

3
dð�3Þ þ 1

3
dð�4Þ ¼ 0þ 0þ 0 ¼ 0

yð�1Þ ¼ 1

3
dð�1Þ þ 1

3
dð�2Þ þ 1

3
dð�3Þ ¼ 0þ 0þ 0 ¼ 0

yð0Þ ¼ 1

3
dð0Þ þ 1

3
dð�1Þ þ 1

3
dð�2Þ ¼ 1

3
þ 0þ 0 ¼ 1

3

yð1Þ ¼ 1

3
dð1Þ þ 1

3
dð0Þ þ 1

3
dð�1Þ ¼ 0þ 1

3
þ 0 ¼ 1

3

yð2Þ ¼ 1

3
dð2Þ þ 1

3
dð1Þ þ 1

3
dð0Þ ¼ 0þ 0þ 1

3
¼ 1

3

yð3Þ ¼ 1

3
dð3Þ þ 1

3
dð2Þ þ 1

3
dð1Þ ¼ 0þ 0þ 0 ¼ 0

yð4Þ ¼ 1

3
dð4Þ þ 1

3
dð3Þ þ 1

3
dð2Þ ¼ 0þ 0þ 0 ¼ 0

. . .

yðkÞ ¼ 0; k � 3

This is an FIR filter with only three nonzero coefficients.

IIR filters are particularly useful for simulating analog systems. The main advantage
of an IIR filter is that the desired job can usually be accomplished with fewer filter
coefficients than for an FIR filter; in other words, IIR filters tend to be more efficient. The
main disadvantage of an IIR filter is that signals may be distorted in an undesirable way.
FIR filters can be designed with symmetry to prevent undesired signal distortion. Methods
for dealing with the distortion problem in FIR filters are outside our discussions here.

Digital filters, as the name implies, are most often designed to perform specific
“filtering” operations: low-pass filters, high-pass filters, band-pass filters, bandstop
filters, notch filters, and so on. However, digital filters can be used to simulate most
analog systems—for example, to differentiate and to integrate. Many textbooks have
been written on digital filter design. The key components of the process are illustrated
following.
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From Digital Filter to Transfer Function

The transfer function for the digital system, H(z), can be obtained by rearranging the dif-
ference equation (Eq. (11.23)) and applying Eq. (11.21). H(z) is the quotient of the
z-transform of the output, Y(z), divided by the z-transform of the input, X(z).

yðkÞ þ a1yðk� 1Þ þ a2yðk� 2Þ . . .þ aNyðk�NÞ ¼ b0xðkÞ þ b1xðk� 1Þ þ . . .þ bMxðk�MÞ
YðzÞ þ a1z

�1YðzÞ þ a2z
�2YðzÞ . . .þ aNz

�NYðzÞ ¼ b0XðzÞ þ b1z
�1XðzÞ þ b2z

�2XðzÞ . . . :þ bMz�MXðzÞ
YðzÞð1þ a1z

�1 þ a2z
�2 . . .þ aNz

�NÞ ¼ XðzÞðb0 þ b1z
�1 þ b2z

�2 . . . :þ bMz�MÞ

HðzÞ ¼ YðzÞ
XðzÞ ¼

b0 þ b1z
�1 þ b2z

�1 . . .þ bMz�M

1þ a1z�1 þ a2z�1 . . .þ aNz�N

ð11:45Þ

From Transfer Function to Frequency Response

The frequency response (H0(O)) of a digital system can be calculated directly from H(z),
where O is in radians. If the data are samples of an analog signal as previously described,
the relationship between o and O is O ¼ oT:

H0ðOÞ ¼ HðzÞjz¼ejO ð11:46Þ
For a linear system, an input sequence of the form

xðkÞ ¼ AsinðO0kþ FÞ
will generate an output whose steady-state sequence will fit into the following form:

yðkÞ ¼ B sinðO0kþ�Þ
Values for B and � can be calculated directly:

B ¼ A H0ðO0Þj j
� ¼ Fþ angleðH0ðO0ÞÞ

EXAMPLE PROBLEM 11.24

The input sequence for the digital filter used in Example Problem 11.23 is

xðkÞ ¼ 100 sin
p
2
k

	 


What is the steady-state form of the output?

Solution

yðkÞ � 1

2
yðk� 1Þ ¼ 1

2
xðkÞ
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The difference equation is first converted into the z-domain:

YðzÞ � 1

2
YðzÞz�1 ¼ YðzÞ 1� 1

2
z�1

� �
¼ 1

2
XðzÞ:

Solving for H(z)

HðzÞ ¼ YðzÞ
XðzÞ ¼

1
2

1� 1
2 z

�1

gives the filter transfer function. To determine the output, the transfer function is evaluated at the

frequency of the input sinusoid ðz ¼ e j
p
2Þ

H0 p
2

	 

¼ H e j

p
2

	 

¼

1
2

1� 1
2 e

�j
p
2

¼
1
2

1þ 1
2 j

¼ 0:4� j0:2 ¼ 0:45e�j0:15p:

This transfer function tells us that the output is obtained by scaling the input magnitude by

0.45 and shifting the signal by a phase factor of 0.15p rads. Therefore, the output is

yðkÞ ¼ 45 sin
p
2
k� :15p

	 


Filter design problems begin with identifying the frequencies that are to be kept versus
the frequencies that are to be removed from the signal. For ideal filters, |H0(Okeep)| ¼ 1
and |H0(Oremove)| ¼ 0. The filters in Example Problems 11.23 and 11.24 can both be consid-
ered as low-pass filters. However, their frequency responses (Figure 11.20) show that
neither is a particularly good low-pass filter. An ideal low-pass filter that has a cutoff
frequency of p/4 with |H0(O)| ¼ 1 for O < p/4 and |H0(O)| ¼ 0 for p/4 and |O| < p is
superimposed for comparison.

Windowed FIR Filter Design

The ideal filters in Section 11.6.4 provide a general framework from which to build
a variety of filter functions to meet specific design criteria for both analog and
discrete systems. Unfortunately, the ideal low-pass filter is not physically realizable, as
we will see following. Using the ideal low-pass filter impulse response as a start-
ing reference, we will develop a modified filter function that overcomes this limita-
tion. The design of a windowed FIR filter is illustrated following for the case of a
low-pass filter, but the same procedures and concepts apply for high-pass and band-
pass filters.

There are two practical limitations associated with the ideal low-pass filter. First, note
that the impulse response of the ideal low-pass filter has infinite duration, extending from
–1 to þ1. Thus, implementing an ideal low-pass filter requires an infinite amount of
time. The simplest way to overcome this limitation is to truncate the impulse response
over a finite time interval from –T to T (Figure 11.21a; shown for T ¼ 0.1 sec). However,
truncation leads to a second undesired effect. The sharp transitions in the impulse
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response to the selected interval do not allow for convergence of the Fourier integral
(Gibbs Phenomena). In the frequency domain, the effects of the truncation can be seen
in the transfer function magnitude of the truncated low-pass filter (Figure 11.21b). The
truncated filter exhibits errors in the passband and stopband regions. These errors are
undesirable because they will distort the signal in the passpand while allowing signals
in the stopband from passing through.

One way to overcome the limitation is to gradually truncate the filter impulse response
with a smooth window function, w(t). The modified low-pass filter is expressed as the prod-
uct of the ideal filter and the window function:

h tð Þ ¼ hLP tð Þw tð Þ ¼ Wc

p
sinc Wctð Þw tð Þ ð11:47Þ

where w(t) is restricted to the interval –T to T (Figure 11.21c). The windowing procedure is
illustrated in Figure 11.21d, which shows the product of the window with the ideal filter
impulse response. The window allows for a smooth truncation of the impulse response,
thus allowing for convergence of the Fourier integral. As can be seen, the resulting stop-
band and passband errors of the windowed filter (Figure 11.21e) are substantially smaller
than for the truncated ideal filter (Figure 11.21b). Details of the design of window functions

0 0.2 0.4 0.6 0.8 1
0 

0.2 

0.4 

0.6 

0.8 

1 

Normalized Ω

|H�(Ω)|

EXAMPLE 8.22

EXAMPLE 8.21

IDEAL LOW-PASS FILTER

FIGURE 11.20 A frequency domain comparison of low-pass filters described in Example Problems 11.23 and
11.24. An ideal low-pass filter with a cutoff frequency at p/4 rads or 0.25 when normalized by p radians is super-
imposed for comparison. The cutoff frequency of a low-pass filter is usually defined as the frequency at which the
amplitude is equal to 1=

ffiffiffi
2

p
or approximately 0.71, which matches Example Problem 11.12. Both digital filters have

the same amplitude at fmax—that is, where normalized O ¼ 1.
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FIGURE 11.21 Filter design by windowing. (a) Truncated ideal low-pass filter impulse response. (b) Magni-
tude response for the ideal truncated filter. Note the errors in the passband and stopband regions. (c) Window
function. (d) Windowed impulse response. (e) Magnitude response of the windowed filter exhibits substantially
smaller passband and stopband errors.
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are beyond the scope of this text and can be found in many signal processing textbooks.
However, numerous window functions have been developed for a variety of applications.
Some of the most celebrated window functions include the Kaiser, Hanning, and Hamming
windows.

So far, we have illustrated the windowing method for a continuous filter, but we would
like to apply this procedure to develop a discrete FIR filter. To achieve this, the continuous
filter impulse response is sampled by allowing t ¼ k=Fs, for integer k. The resulting discrete
impulse response is expressed as

h k½ � ¼ Wc

p
sinc

Wc

Fs
k

� �
w kð Þ ¼ Wc

p
sinc Ockð Þw kð Þ ð11:48Þ

where Oc ¼ Wc=Fs is the digital cutoff frequency of the filter. Note that according to the
Nyquist sampling theorem, 0 < Wc < Fs=2, and thus 0 < Oc < p.

EXAMPLE PROBLEM 11.25

In MATLAB, implement a 201 sample digital low-pass and high-pass filter using a Hanning

window. The cutoff frequency of both filters is 1000 Hz. Plot the impulse response and transfer

function magnitude.

Solution

Wc¼2*pi*1000; %Cutoff Frequency in Radians / Sec
Fs¼10000; %Sampling Rate in Hz
T¼1/Fs;

%Ideal Filters
N¼100; %Filter Order
t¼(-N:N)/Fs; %Time Axis Sampled at Fs
h_lp¼Wc/pi*sinc(1/pi*Wc*t); %Sampled Ideal Low-pass Filter
Impulse Response
delta¼[zeros(1,N) Fs zeros(1,N)]; %Discrete Diract Impulse
Function
h_hp¼(delta-h_lp); %Sampled Ideal High-pass Filter Impulse
Response

%Hanning Filters
W¼hanning(2*Nþ1)’; %Hanning Window
h_lp¼h_lp.*W; %Hanning Low-pass Filter Impulse Response
h_hp¼h_hp.*W; %Hanning High-pass Filter Impulse Response
NFFT¼1024*8; %FFT number of samples
faxis¼(0:NFFT-1)/NFFT*Fs; %Frequency Axis
H_lp¼abs(fft(h_lp,NFFT))/Fs; %Hanning Low-pass Filter Transfer
Function Magnitude
H_hp¼abs(fft(h_hp,NFFT))/Fs; %Hanning High-pass Filter Transfer
Function Magnitude
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%Plotting Results
subplot(221)
plot(t,h_lp,’k’)
xlabel(’Time (sec)’)
ylabel(’Amplitude’)

subplot(222)
plot(faxis,H_lp,’k’);
axis([0 Fs/2 0 1.2])
xlabel(’Frequency (Hz)’)
ylabel(’Magnitude’)

subplot(223)
plot(t,h_hp,’k’)
xlabel(’Time (sec)’)
ylabel(’Amplitude’)

subplot(224)
plot(faxis,H_hp,’k’);
axis([0 Fs/2 0 1.2])
xlabel(’Frequency (Hz)’)
ylabel(’Magnitude’)

The results are shown in Figure 11.22.
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FIGURE 11.22 Low-pass and high-pass FIR filter MATLAB simulation. (a) Hanning low-pass filter
impulse response and magnitude response (b).
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EXAMPLE PROBLEM 11.26

Using the digital low-pass and high-pass filters of Example Problem 11.25, filter a white noise

(flat spectrum) signal. Plot the magnitude spectrum of the input and output signals.

Solution

%Filtering the Random Noise Signal
X¼randn(1,Fs); %1 second of Random Noise
Y_lp¼conv(X,h_lp); %Low-pass Filtered Noise
Y_hp¼conv(X,h_hp); %High-pass Filtered Noise

%Plotting Results
subplot(221)
psd(X,1024,Fs); %Input Power spectrum Magnitude
hold on
psd(Y_lp,1024,Fs); %Low-pass Output Power spectrum Magnitude
ch¼get(gca,’children’)
set(ch(1),’color’,’k’)
set(ch(2),’color’,[0.5 0.5 0.5])

subplot(222)
psd(X,1024,Fs); %Input Power spectrum Magnitude
hold on
psd(Y_hp,1024,Fs); %High-pass Output Power spectrum Magnitude
ch¼get(gca,’children’)
ch¼get(gca,’children’)
set(ch(1),’color’,’k’)
set(ch(2),’color’,[0.5 0.5 0.5])

The results are shown in Figure 11.23.
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FIGURE 11.22, cont’d (c) Hanning high-pass filter impulse response and magnitude response (d).
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11.7 SIGNAL AVERAGING

Biological signal measurements are often confounded by measurement noise. Variability
in the measurement of a signal often makes it difficult to determine the signal characteris-
tics, making it nearly impossible to obtain a reliable clinical diagnosis.

Many classes of biological signals are modeled as the sum of an ideal noiseless signal
component, x(t), and separate independent noise term, n(t):

xiðtÞ ¼ xðtÞ þ niðtÞ: ð11:49Þ
The signal, xi(t), corresponds to the “measured” i-th trial or i-th measurement of the signal.
Note that the i-th measurement contains both a deterministic component, x(t), and a random
or stochastic noise term, ni(t). Although the deterministic component of the signal is fixed from
trial to trial, the noise term represents intrinsic variability, which may arise from a number of
separate sources. The i-thmeasurement can therefore exhibit significant trial-to-trial variability
because the random component, ni(t), is different across consecutive trials. As an example, a
measurement ECG (electrocardiogram) electrode can pick up extraneous signals from the
muscles, lungs, and even the internal electronics of the recording devices (e.g., 60 cycle noise
from the power supply). The activity of these signals is unrelated to the activity of the beating
heart, and it therefore shows up in the signal measurement as noise. Other unpredictable
changes in the activity of the heartbeat, such as from the caffeine jolt after drinking an espresso,
could also show up in a measurement and be interpreted as noise to an uninformed observer.

We have already examined one possible way to separate out the signal term from the
noise term by filtering the signal with an appropriately designed filter. Appropriate filter-
ing allows one to clean up the signal, thus improving the quality of signal and the diagnos-
tic reliability in clinical settings. If the spectrum of the noise and signal components do not
overlap in the frequency domain, one can simply design a filter that keeps or enhances the
desired signal term, x(t), and discards the unwanted noise term, ni(t). While this is a simple
and useful way of cleaning up a signal, this approach does not work in many instances
because the biological signal and noise spectrums overlap.
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FIGURE 11.23 Low-pass and high-pass filtered noise signal. (a and b) Gray lines show the power spec-
trum of the input signal. (a) Low-pass filtered noise power spectrum is shown as black. (b) High-pass filtered
noise power spectrum is shown as black.
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Many biological signals are approximately periodic in nature. Signals associated with
the beating heart—blood pressure, blood velocity, electrocardiogram (ECG)—fall into this
category. However, due to intrinsic natural variability, noise, and/or the influence of other
functions, such as respiration, beat-to-beat differences are to be expected. Figure 11.2 is an
example of a blood pressure signal that has all of the described variability.

Blood pressure signals have many features that clinicians and researchers use to deter-
mine a patient’s health. Some variables that are often measured include the peak pressure
while the heart is ejecting blood (systolic phase), the minimum pressure achieved while
the aortic valve is closed (diastolic phase), the peak derivative (dP/dt) during the early part
of the systolic phase (considered an indication of the strength of the heart), and the time
constant of the exponential decay during diastole (a function of the resistance and compli-
ance of the blood vessels). One way to determine variables of interest is to calculate the
variables or parameters for each beat in a series of beats and then report the means. This
is often not possible because noise from individual measurements makes it very difficult
to accurately determine the relevant biological parameters. An alternate approach is to first
average the signal measurements from separate trials,

�xðtÞ ¼ 1

N

XN
i¼1

xiðtÞ, ð11:50Þ

such that a representative beat is obtained. If the signal is discrete, this average is repre-
sented by

�xðkÞ ¼ 1

N

XN
i¼1

xiðkÞ ð11:51Þ

Here, xi(t), or xi(k) for the discrete case, represents the i-th measured heartbeat signal out of
a total of N measurements. The signal �xðtÞ, �xðkÞ for the discrete case, represents the mean or
average waveform obtained following the averaging procedure. Substituting Eq. (11.50)
into (11.49) leads to

�xðtÞ ¼ xðtÞ þ 1

N

XN
i¼1

niðtÞ ¼ xðtÞ þ eðtÞ: ð11:52Þ

If the noise term, ni(t), is random and independent from trial-to-trial, it can be shown that the
measurement error term in Eq. (11.52), e(t), which contains the influence of the noise,
approaches 0 as N ! 1. Thus, �xðtÞ � xðtÞ for very large N, where e(t) tends to be small. This
is a very powerful result! It tells us that we can effectively remove the noise by simply averag-
ing measurements from many trials. Essentially, if we average a sufficiently large number of
signal trials, the averaged signal closely approximates the true noiseless signal waveform.

Many biological acquisition systems are designed to calculate signal averages
(Eqs. (11.50) and (11.51)) as data are collected. The summation process is triggered by
a signal or a signal-related feature. The ECG signal, which has many sharp features,
is often used for heartbeat-related data. Figure 11.24 shows a signal-averaged blood
pressure waveform for the data shown in Figure 11.2. Figure 11.25 shows the signal-
averaging procedure for an auditory brainstem response (ABR) EEG measurement.
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In both cases, note that the averaging helps to preserve the relevant signal features and
remove undesirable noise disturbances.

The blood pressure and ABR examples illustrate signal averaging in the time domain.
For signals that are random in nature, signal averaging in the frequency domain is some-
times preferable. Figure 11.26 shows an EEG signal sampled over the occipital lobe of a
patient. The sampling rate was 16 kHz. EEG analysis is usually done in the frequency
domain, since the presence of different frequencies is indicative of different brain states,
such as sleeping, resting, alertness, and so on. The power at each frequency estimate, which
can be approximated by the square of the Fourier transform, is the measurement of choice.

If a DFT is performed on the data to estimate the power of the frequencies in the signal, the
expected noise in themeasurement is of the same size as themeasurement itself. To reduce the
noise variance, a statistical approachmust be undertaken. One popular approach is known as
the “Welch” or “periodogram averaging” method. The signal is broken into L sections (dis-
joint if possible) ofNpoints each. ADFT is performed on each of the L sections. The final result
for the N frequencies is then the average at each frequency for the L sections.

The N data points in the i-th segment are denoted as

xiðkÞ ¼ xðkþ ði� 1ÞNÞ 0 � k � N � 1, 1 � i � L
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FIGURE 11.24 A signal-averaged pressure waveform for the data shown in Figure 11.2.
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FIGURE 11.25 Single trials from an auditory evoked response to a brief sound pulse (at time zero)
were measured on the temporal lobe. The auditory response from individual trials is obscured by random
noise (shown first 4 out of 1,000). Averaged response of 1,000 trials reveals the auditory response component
(bottom trace).
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FIGURE 11.26 An EEG signal containing 1,000 samples sampled at 16 kHz from the occipital.
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if the segments are consecutive and disjoint. The power estimate based on the DFT of an
individual segment “i” is

P̂iðmÞ ¼ 1

N

XN�1

k¼0

xiðkÞe�j
2 pmk
N

�����
�����
2

for 0 � m � N � 1 ð11:53Þ

where m is associated with the power at a frequency of O ¼ 2pm/N radians. The averaged
signal spectrum is calculated by taking the mean at each frequency

P̂ðmÞ ¼ 1

L

XL
i¼1

P̂iðmÞ ð11:54Þ

The selection of N is very important, since N determines the resolution in the frequency
domain. For example, if data are sampled at 500 samples/s and the resolution is desired at
the 1 Hz level, at least 1 second or 500 samples (N ¼ 500) should be included in each of the
L sections. If resolution at the 10 Hz level is sufficient, only 0.1 seconds or 50 data points
need to be included in each section. Note that the reduction in the frequency resolution
leads to improvement in the certainty of the measurement because one can now average
more signal segments. The averaging procedure decreases the variance by a factor of 1/L.
This averaging process is demonstrated for the EEG data in Figure 11.27. Modifications to
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FIGURE 11.27 DFT averaging of an EEG. The top trace shows the raw DFT. The bottom trace shows the
periodogram-averaged DFT obtained with 16 64-point segments of the data.
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the procedure may include using overlapping segments if a larger value for L is needed and
the number of available data points is not sufficient and/or multiplying each section by a
window that forces continuity at the end points of the segments.

EXAMPLE PROBLEM 11.27

Consider the sinusoid signal

xðkÞ ¼ sinðp=4kÞ þ nðkÞ

that is corrupted by random noise, n(k). Using MATLAB, show that averaging the signal removes

the noise component and reveals the deterministic component. Show results for 1, 10, and 100

averages.

Solution

k¼1:64; %Discrete Time Axis
for i¼1:100 %Generating 100 signal Trials

x(i,:)¼sin(pi/4*k)þrandn(1,64); %i-th trial
end
X1¼x(1,:); %1 Averages
X10¼mean(x(1:10,:)); %10 Averages
X100¼mean(x); %100 Averages

subplot(311) %Plotting Results, 1 Average
plot(k,X1,’k’)
axis([1 64 -3 3])
title(’1 Average’)
ylabel(’Amplitude’)

subplot(312) %Plotting Results, 10 Averages
plot(k,X10,’k’)
axis([1 64 -3 3])
title(’10 Averages’)
ylabel(’Amplitude’)

subplot(313) %Plotting Results, 100 Averages
plot(k,X100,’k’)
axis([1 64 -3 3])
title(’100 Averages’)
xlabel(’Discrete Time’)
ylabel(’Amplitude’)

The results are shown in Figure 11.28.
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11.8 THE WAVELET TRANSFORM AND THE SHORT-TIME
FOURIER TRANSFORM

The Fourier transform (Eq. (11.6)) is a well-known signal processing tool for breaking a
signal into constituent sinusoidal waveforms of different frequencies. For many applica-
tions, particularly those that change little over time, knowledge of the overall frequency
content may be all that is desired. The Fourier transform, however, does not delineate
how a signal changes over time.

The short-time Fourier transform (STFT) and the wavelet transform (WT) have been
designed to help preserve the time-domain information. The STFT approach is to perform
a Fourier transform on only a small section (window) of data at a time, thus mapping
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FIGURE 11.28 MATLAB results showing noise removal by averaging a noisy sinusoid signal. Shown for
1, 10, and 100 averages.
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the signal into a 2D function of time and frequency. The transform is described mathemat-
ically as

Xðo, aÞ ¼
ð1

�1
xðtÞgðt� aÞe�jotdt ð11:55Þ

where g(t) may define a simple box or pulse function. The inverse of the STFT is given as

Xðo, aÞ ¼ Kg

ð ð
Xðo, aÞgðt� aÞejotdtda ð11:56Þ

where Kg is a function of the window used.
To avoid the “boxcar” or “rippling” effect associated with a sharp window, the window

may be modified to have more gradually tapered sides. Both designs are shown in
Figure 11.29. The windows are superimposed on a totally periodic aortic pressure signal.
For clarity, the windows have been multiplied by a factor of 100.

The STFT amplitudes for three box window sizes, ½ period, 1 period, and 2 periods,
are illustrated in Figure 11.30. The vertical lines in the top figure are indicative of longer
periodicities than the window. The solid-colored horizontal lines in the bottom two
figures indicate that the frequency content is totally independent of time at that
window size. This is expected, since the window includes either one or two perfect
periods. The dark (little or no frequency content) horizontal lines interspersed with
the light lines in the bottom figure indicate that multiple periods exist within the
window.
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FIGURE 11.29 An example of two windows that might be used to perform an STFT on a perfectly periodic
aortic pressure waveform. Each window approximates the width of one pulse. The tapered window on the left
can help avoid the “boxcar” or “rippling” effect associated with the sharp window on the right. For clarity, the
windows have been multiplied by a factor of 100.
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In contrast, Figure 11.31 shows an amplitude STFT spectrum for the aperiodic pressure
waveform shown in Figure 11.2, with the window size matched as closely as possible to
the heart rate. The mean has been removed from the signal so the variation in the lowest
frequencies (frequency level 0) reflects changes with respiration. The level of the heart rate
(level 1) is most consistent across time, and the variability increases with frequency.

The main disadvantage of the STFT is that the width of the window remains fixed
throughout the analysis. Wavelet analysis represents a change from both the FT and STFT
in that the constituent signals are no longer required to be sinusoidal and the windows
are no longer of fixed length. In wavelet analysis, the signals are broken up into shifted
and scaled versions of the original or “mother” wavelet, c(t). Figure 11.32 shows examples
of two wavelets: the Haar on the left and one from the Daubechies (db2) series on the right.
Conceptually, these mother wavelet functions are analogous to the impulse response of a
band-pass filter. The sharp corners enable the transform to match up with local details that
are not possible to observe using a Fourier transform.

STFT (TIME VS. FREQUENCIES)

0 100 200 300 400 500
0

5

10

0 50 100 150 200 250 300 350 400 450 500
0

5

10

TIME (ms)
0 20 40 60 80 100 120 140 160 180

0

5

10

1/2
Period
Window

1
Period
Window

2
Period
Window

FIGURE 11.30 A two-dimensional rendering of the STFT amplitude coefficients for three box window sizes—
½ period, 1 period, and 2 periods—applied to the perfectly periodic data shown in Figure 11.17. The lighter the
color, the larger the amplitude. For example, the 0th row corresponds to the mean term of the transform, which
is the largest in all cases. Higher rows correspond to harmonics of the data, which, in general, decrease with fre-
quency. The vertical lines in the top figure are indicative of longer periodicities than the window. The solid-colored
horizontal lines in the bottom two figures indicate that the frequency content is totally independent of time at that
window size. The dark (little or no frequency content) horizontal lines interspersed with the light lines in the
bottom figure indicate that multiple periods exist within the window.
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The notation for the 2D WT is

Cða, sÞ ¼
ð1

�1
xðtÞ’ða, s, tÞdt ð11:57Þ

where a ¼ scale factor and s ¼ the position factor. C can be interpreted as the correlation
coefficient between the scaled, shifted wavelet and the data. Figure 11.33 shows the db2
(j(t)) wavelet at different scales and positions—for example, j (2,–100,t) ¼ j (2t-100). The
inverse wavelet transform
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FIGURE 11.31 A two-dimensional rendering of the STFT of the aperiodic aortic pressure tracing shown in
Figure 11.2. The window size was matched as closely as possible to the heart rate. The mean was removed from
the signal so the variation in the lowest frequencies—that is, frequency level 0—reflects changes with respiration.
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FIGURE 11.32 The general shape of two wavelets commonly used in wavelet analysis. The sharp corners
enable the transform to match up with local details not possible to observe when using a Fourier transform that
matches only sinusoidal shapes.

730 11. BIOSIGNAL PROCESSING



xðtÞ ¼ K’

ð ð
Cða, sÞ’ða, s, tÞdtds ð11:58Þ

can be used to recover the original signal, x(t), from the wavelet coefficients, C(a, s). K’ is a
function of the wavelet used.

In practice, wavelet analysis is performed on digitized signals using a subset of scales
and positions (see MATLAB’s Wavelet Toolbox). One computational process is to recur-
sively break the signal into low-frequency (“high-scale” or “approximation”) and high-
frequency (“low-scale” or “detail”) components using digital low-pass and high-pass filters
that are functions of the mother wavelet. The output of each filter will have the same num-
ber of points as the input. In order to keep the total number of data points the same at each
level, every other data point of the output sequences is discarded. This process is known as
“downsampling.” Using “upsampling” and a second set of digital filters, called reconstruc-
tion filters, the process can be reversed, and the original data set is reconstructed. Remark-
ably, the inverse discrete wavelet transform does exist!

While this process will rapidly yield wavelet transform coefficients, the power of discrete
wavelet analysis lies in its ability to examine waveform shapes at different resolutions
and to selectively reconstruct waveforms using only the levels of approximation and detail
that are desired. Applications include detecting discontinuities and breakdown points,
detecting long-term evolution, detecting self-similarity (e.g., fractal trees), identifying pure
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FIGURE 11.33 Illustrations of the db2 wavelet at several scales and positions. The upper left-hand corner illus-
trates the basic waveform j (t). The notation for the illustrations is given in the form j (scale, delay, t). Thus, j (t)
¼ j (1,0,t), j (2t-100) ¼ j (2,–100,t), and so on.
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frequencies (similar to Fourier transform), and suppressing, denoising, and/or compressing
signals.

For comparison purposes, discrete Fourier transforms and discrete wavelet transforms
are illustrated for the pressure waveforms shown in Figure 11.2. Figure 11.34 shows details
of the DFT on the entire record of data. The beat-to-beat differences are reflected by the
widened and irregular values around the harmonics of the heart rate. The respiration influ-
ence is apparent at the very low frequencies.

Finally, an example from the MATLAB Wavelet Toolbox is shown that uses the same pres-
sure waveform. Figure 11.35 is a 2D rendering of the wavelet transform coefficients. The
x-axis shows the positions and the y-axis shows the scales, with the low scales on the bottom
and the high scales on the top. The top scale clearly shows the two respiratory cycles in the
signal. More informative than the transform coefficients, however, is a selective sample of
the signal details and approximations. As the scale is changed from a1 to a7, the approxima-
tion goes from emphasizing the heart rate components to representing the respiration compo-
nents. The details show that the noise at the heart rate levels is fairly random at the lower
scales but moves to being quite regular as the heart rate data become the noise (Figure 11.36).

11.9 ARTIFICIAL INTELLIGENCE TECHNIQUES

Artificial intelligence (AI) is a broad field that focuses on the application of computer
systems that exhibit intelligent capabilities. AI systems can be built from a number
of separate technologies, including fuzzy logic, neural networks, and expert systems. The
principal aim of AI is to create intelligent machines that can function under adverse and
unpredictable circumstances. The term intelligent as it applies to machines indicates
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FIGURE 11.34 DFT of pressure data from Figure 11.2. The first, second, and third harmonics of the heart rate
are clearly visible.
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FIGURE 11.35 MATLAB was used to produce a two-dimensional rendering of the wavelet transform coeffi-
cients, with the Daubechies wavelet applied to the aortic pressure tracing in Figure 11.2. The x-axis shows the posi-
tions and the y-axis shows the scales with the low scales on the bottom and the high scales on the top. The associate
waveforms at selected levels of these scales are shown in Figure 11.33.
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computer-based systems that can interact with their environment and adapt to changes in
the environment. The adaptation is accomplished through self-awareness and perceived
models of the environment that are based on qualitative and quantitative information. In
other words, the basic goal of AI techniques is to produce machines that are more capable
of human-like reasoning, decision making, and adaptation.

FIGURE 11.36 A selective sample of the signal details and approximations generated by MATLAB as part of
the wavelet transform process.
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The machine intelligence quotient (MIQ) is a measure of the intelligence level of
machines. The higher a machine’s MIQ, the higher the capacity of the machine for auto-
matic reasoning and decision making. The MIQ of a wide variety of machines has risen sig-
nificantly during the past few years. Many computer-based consumer products, industrial
machinery, and biomedical instruments and systems are using more sophisticated artificial
intelligence techniques. Advancements in the development of fuzzy logic, neural networks,
and other soft computing techniques have contributed significantly to the improvement of
the MIQ of many machines.

Soft computing is an alliance of complementary computing methodologies. These meth-
odologies include fuzzy logic, neural networks, probabilistic reasoning, and genetic algorithms.
Various types of soft computing often can be used synergistically to produce superior intelligent
systems. The primary aim of soft computing is to allow for imprecision, since many of the pa-
rameters that machines must evaluate do not have precise numeric values. Parameters of
biological systems can be especially difficult to measure and evaluate precisely.

11.9.1 Fuzzy Logic

Fuzzy logic is based on the concept of using words rather than numbers for computing,
since words tend to be much less precise than numbers. Computing has traditionally
involved calculations that use precise numerical values, while human reasoning generally
uses words. Fuzzy logic attempts to approximate human reasoning by using linguistic vari-
ables. Linguistic variables are words that are used to describe a parameter. For body tem-
perature, linguistic variables that might be used are high fever, above normal, normal,
below normal, and frozen. The linguistic variables are more ambiguous than the number
of degrees Fahrenheit, such as 105.0, 98.9, 98.6, 97.0, and 27.5.

In classical mathematics, numeric sets called crisp sets are defined, while the basic ele-
ments of fuzzy systems are fuzzy sets. An example of a crisp set is A ¼ [0, 20]. Crisp sets
have precisely defined, numeric boundaries. Fuzzy sets do not have sharply defined
bounds. Consider the categorization of people by age. Using crisp sets, the age groups
could be divided as A ¼ [0, 20], B ¼ [30, 50], and C ¼ [60, 80]. Figure 11.37a shows the char-
acteristic function for the sets A, B, and C. The value of the function is either 0 or 1, depend-
ing on whether the age of a person is within the bounds of set A, B, or C. The scheme using
crisp sets lacks flexibility. If a person is 25 years old or 37 years old, he or she is not
categorized.

If the age groups were instead divided into fuzzy sets, the precise divisions between the
age groups would no longer exist. Linguistic variables, such as young, middle-aged, and
old, could be used to classify the individuals. Figure 11.37b shows the fuzzy sets for age
categorization. Note the overlap between the categories. The words are basic descriptors,
not precise measurements. A 30-year-old woman may seem old to a 6-year-old boy but quite
young to an 80-year-old man. For the fuzzy sets, a value of 1 represents a 100 percent degree
of membership to a set. A value of 0 indicates that there is no membership in the set. All
numbers between 0 and 1 show the degree of membership to a group. A 35-year-old person,
for instance, belongs 50 percent to the young set and 50 percent to the middle-aged set.

As with crisp sets from classical mathematics, operations are also defined for fuzzy sets.
The fuzzy set operation of intersection is shown in Figure 11.38a. Figure 11.38b shows the
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fuzzy union operator, and Figure 11.38c shows the negation operator for fuzzy sets. The
solid line indicates the result of the operator in each figure.

Although it is easy to form fuzzy sets for a simple example such as age classification, fuzzy
sets for more sophisticated applications are derived by using sophisticated calibration techni-
ques. The linguistic variables are formulated mathematically and then can be processed by
computers. Once the fuzzy sets have been established, rules are constructed. Fuzzy logic is
a rule-based logic. Fuzzy systems are constructed by using a large number of rules. Most
rules used in fuzzy logic computing are if-then statements that use linguistic variables.
Two simple rules that use the fuzzy sets for age classification might be the following:

If the patient is YOUNG, then use TREATMENT A.
If the patient is MIDDLE-AGED or OLD, then use TREATMENT B.

The degree of membership in a group helps to determine which rule will be used and,
consequently, the type of action that will be taken or, in the preceding example, the sort
of treatment that will be used. Defuzzification methods are used to determine which rules
will be used to produce the final output of the fuzzy system.

For many applications, fuzzy logic has significant advantages over traditional numeric
computing methods. Fuzzy logic is particularly useful when information is too limited or
too complex to allow for numeric precision, since it tolerates imprecision. If an accurate
mathematical model cannot be constructed, fuzzy logic may prove valuable. However, if
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FIGURE 11.37 (a) Crisp sets for the classification of people by age. (b) Fuzzy sets for the classification of people
by age.
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a process can be described or modeled mathematically, then fuzzy logic will not generally
perform better than traditional methods.

Biomedical engineering applications, which involve the analysis and evaluation of bio-
signals, often have attributes that confound traditional computing methods but are well
suited to fuzzy logic. Biological phenomena are often not precisely understood and can
be extremely complex. Biological systems also vary significantly from one individual to
the next individual. In addition, many key quantities in biological systems cannot be
measured precisely due to limitations in existing sensors and other biomedical measuring
devices. Sensors may have the capability to measure biological quantities intermittently
or in combination with other parameters but not independently. Blood glucose sensors,
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for example, are sensitive not only to blood glucose but also to urea and other elements in
the blood. Fuzzy logic can be used to help compensate for the limitations of sensors.

Fuzzy logic is being used in a variety of biomedical engineering applications. Closed
loop drug delivery systems, which are used to automatically administer drugs to patients,
have been developed by using fuzzy logic. In particular, fuzzy logic may prove valuable in
the development of drug delivery systems for anesthetic administration, since it is difficult
to precisely measure the amount of anesthetic that should be delivered to an individual
patient by using conventional computing methods. Fuzzy logic is also being used to
develop improved neuroprosthetics for paraplegics. Neuroprosthetics for locomotion use
sensors controlled by fuzzy logic systems to electrically stimulate necessary leg muscles
and will ideally enable the paraplegic patient to walk.

EXAMPLE PROBLEM 11.28

A fuzzy system is used to categorize people by heart rates. The system is used to help determine

which patients have normal resting heart rates, bradycardia, or tachycardia. Bradycardia is a cardiac

arrhythmia in which the resting heart rate is less than 60 beats per minute, while tachycardia is

defined as a cardiac arrhythmia in which the resting heart rate is greater than 100 beats per minute.

A normal heart rate is considered to be in the range of 70–80 beats per minute. What are three

linguistic variables that might be used to describe the resting heart rates of the individuals?

Solution

A variety of linguistic variables may be used. The names are important only in that they offer a

good description of the categories and problem. Slow, normal, and fast might be used. Another

possibility is simply bradycardia, normal, and tachycardia.

11.9.2 Artificial Neural Networks

Artificial neural networks (ANN) are the theoretical counterpart of real biological neural
networks. The human brain is a highly sophisticated biological neural network, consisting
of billions of brain cells (i.e., neurons) that are highly interconnected among one another.
Such a highly interconnected architecture of neurons allows for immense computational
power, typically far beyond our most sophisticated computers. The brains of humans,
mammals, and even simple invertebrate organism (e.g., a fly) can easily learn from experi-
ence, recognize relevant sensory signals (e.g., sounds and images), and react to changes in
the organism’s environment. Artificial neuronal networks are designed to mimic and
attempt to replicate the function of real brains.

ANNs are simpler than biological neural networks. A sophisticated ANN contains only a
few thousand neurons with several hundred connections. Although simpler than biological
neural networks, the aim of ANNs is to build computer systems that have learning,
generalized processing, and adaptive capabilities resembling those seen in real brains. Arti-
ficial neural networks can learn to recognize certain inputs and to produce a particular
output for a given input. Therefore, artificial neural networks are commonly used for
pattern detection and classification of biosignals.
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ANNs consist of multiple interconnected neurons. Different types of neurons can be
represented in an ANN. Neurons are arranged in a layer, and the different layers of neu-
rons are connected to other neurons and layers. The manner in which the neurons are
interconnected determines the architecture of the ANN. There are many different ANN
architectures, some of which are best suited for specific applications. Figure 11.39 shows
a schematic of a simple ANN with three layers of neurons and a total of six neurons. The
first layer is called the input layer and has two neurons, which accept the input to the net-
work. The middle layer contains three neurons and is where much of the processing occurs.
The output layer has one neuron that provides the result of the ANN.

Mathematical equations are used to describe the connections between the neurons.
The diagram in Figure 11.40 represents a single neuron and a mathematical method for
determining the output of the neuron. The equation for calculating the total input to the
neuron is

x ¼ ðInput1 �Weight1Þ þ ðInput2 �Weight2Þ þ Bias Weight ð11:59Þ

Input
Layer

Hidden
Layer

Output
Layer

FIGURE 11.39 A simple artificial neural network (ANN) with six neurons and three layers.

g(x)
x

Σ y = Output of Neuron

Input 2

Input 1

Weight 2

Weight 1

Bias

Neuron

FIGURE 11.40 A single neuron showing mathematical input and output relationships.
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The output for the neuron is determined by using a mathematical function, g(x). Thresh-
old functions and nonlinear sigmoid functions are commonly used. The output y of a
neuron using the sigmoid function is calculated from the following simple equation:

y ¼ 1=ð1þ e�xÞ ð11:60Þ
In biosignal processing applications, the inputs to the first layer or input layer of the

ANN can be raw data, a preprocessed signal, or extracted features from a biosignal. Raw
data are generally a sample from a digitized signal. Preprocessed signals are biosignals that
have been transformed, filtered, or processed using some other method before being input
to the neural network. Features can also be extracted from biosignals and used as inputs for
the neural network. Extracted features might include thresholds; a particular, reoccurring
waveshape; or the period between waveforms.

The ANN must learn to recognize the features or patterns in an input signal, but this is
not the case initially. In order for the ANN to learn, a training process must occur in which
the user of the ANN presents the neural network with many different examples of impor-
tant input. Each example is given to the ANN many times. Over time, after the ANN has
been presented with all of the input examples several times, the ANN learns to produce
particular outputs for specific inputs.

There are a variety of types of learning paradigms for ANNs. Learning can be broadly
divided into two categories: unsupervised learning and supervised learning. In unsupervised
learning, the outputs for the given input examples are not known. The ANN must perform
a sort of self-organization. During unsupervised learning, the ANN learns to recognize com-
mon features in the input examples and produces a specific output for each different type
of input. Types of ANNs with unsupervised learning that have been used in biosignal proces-
sing include the Hopfield network and self-organizing feature maps networks.

In supervised learning, the desired output is known for the input examples. The output
that the ANN produces for a particular input or inputs is compared against the desired out-
put or output function. The desired output is known as the target. The difference between
the target and the output of the ANN is calculated mathematically for each given input
example. A common training method for supervised learning is backpropagation. The mul-
tilayered perceptron trained with backpropagation is a type of a network with supervised
learning that has been used for biosignal processing.

Backpropagation is an algorithm that attempts to minimize the error of the ANN. The
error of the ANN can be regarded as simply the difference between the output of the ANN
for an input example and the target for that same input example. Backpropagation uses a
gradient-descent method to minimize the network error. In other words, the network error
is gradually decreased down an error slope that is in some respects similar to how a ball rolls
down a hill. The name backpropagation refers to the way by which the ANN is changed to
minimize the error. Each neuron in the network is “credited” with a portion of the network
error. The relative error for each neuron is then determined, and the connection strengths
between the neurons are changed to minimize the errors. The weights, such as those that
were shown in Figure 11.40, represent the connection strengths between neurons. The calcu-
lations of the neuron errors and weight changes propagate backward through the ANN
from the output neurons to the input neurons. Backpropagation is the method of finding
the optimum weight values that produce the smallest network error.
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ANNs are well suited for a variety of biosignal processing applications and may be used
as a tool for nonlinear statistical analysis. They are often used for pattern recognition and
classification. In addition, ANNs have been shown to perform faster and more accurately
than conventional methods for signals that are highly complex or contain high levels of
noise. ANNs also have the ability to solve problems that have no algorithmic solution—in
other words, problems for which a conventional computer program cannot be written.
Since ANNs learn, algorithms are not required to solve problems.

As advances are made in artificial intelligence techniques, ANNs are being used more
extensively in biosignal processing and biomedical instrumentation. The viability of ANNs
for applications ranging from the analysis of ECG and EEG signals to the interpretation of
medical images and the diagnosis of a variety of diseases has been investigated. In neurol-
ogy, research has been conducted by using ANNs to characterize brain defects that occur in
disorders such as epilepsy, Parkinson’s disease, and Alzheimer’s disease. ANNs have also
been used to characterize and classify ECG signals of cardiac arrhythmias. One study used
an ANN in the emergency room to diagnose heart attacks. The results of the study showed
that, overall, the ANN was better at diagnosing heart attacks than the emergency room
physicians were. ANNs have the advantage of not being affected by fatigue, distractions,
or emotional stress. As artificial intelligence technologies advance, ANNs may provide a
superior tool for many biosignal processing tasks.

EXAMPLE PROBLEM 11.29

A neuron in a neural network has three inputs and uses a sigmoid function to calculate the

output of the neuron. The three values of the inputs are 0.1, 0.9, and 0.1. The weights associated

with these three inputs are 0.39, 0.72, and 0.26, and the bias weight is 0.48 after training. What

is the output of the neuron?

Solution

Using Eq. (11.32) to calculate the relative sum of the inputs gives

x ¼ ðInput1 �Weight1Þ þ ðInput2 �Weight2Þ þ ðInput3 �Weight3Þ þ Bias Weight

¼ ð0:1Þ 0:39þ ð0:9Þ 0:72þ ð0:1Þ 0:24þ 0:48

¼ 1:19

The output of the neuron is calculated using Eq. (11.60):

y ¼ 1=ð1þ e�xÞ ¼ 1=ð1þ e�1:19Þ ¼ 0:77

11.10 EXERCISES

1. What types of biosignals would the nerves in your legs produce during a sprint across the

street?

2. What types of biosignals can be recorded with an EEG? Describe in terms of both origins and

characteristics of the signal.

Continued
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3. Describe the biosignal that the electrical activity of a normal heart would generate during a

bicycle race.

4. A 16-bit A/D converter is used to convert an analog biosignal with a minimum voltage of

–30 mV and a maximum voltage of 90 mV. What is the sensitivity?

5. An EMG recording of skeletal muscle activity has been sampled at 200–250 Hz and correctly

digitized. What is the highest frequency of interest in the original EMG signal?

6. Two signals, x1(t) and x2(t), have the magnitude spectrum shown in Figure 11.41. Find the

Nyquist rate for:

(a) x1(t)

(b) x2(t)

(c) xðtÞ ¼ x1ðtÞ * x2ðtÞ
(Hint: Apply the convolution theorem.)

7. Consider the signal

xðtÞ ¼ 3þ sinð2p 100tÞ þ cosð2p 250tþ p=3Þ
Find the Nyquist frequency.

8. A sinusoid with the frequency of 125 kHz is sampled at 70,000 samples per second. What is

the apparent frequency of the sampled signal?

9. An electroencephalographic (EEG) signal has a maximum frequency of 300 Hz. The signal is

sampled and quantized into a binary sequence by an A/D converter.

(a) Determine the sampling rate if the signal is sampled at a rate 50 percent higher than the

Nyquist rate.

(b) The samples are quantized into 2,048 levels. How many binary bits are required for each

sample?

10. Find the exponential Fourier series for the signal shown in Figure 11.42a.

11. Find the exponential Fourier series for the signal shown in Figure 11.42b.

12. f(t) is a periodic signal shown in Figure 11.43. Find its trigonometric Fourier series.

13. Consider the following trigonometric Fourier series:

f ðtÞ ¼ 3þ 3 cosðtÞ þ 2 cosð2tÞ þ 4 sinð2tÞ � 4
e j4t þ e�j4t

2

� �
:

Write f(t) in its compact trigonometric Fourier series form.

14. Explain why the exponential Fourier series requires negative frequencies.

0
ω

X1(ω) X2(ω)

3000π 0
ω

5000π

FIGURE 11.41
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15. Find the Fourier transform of

(a) u(t)

(b) e�atu(t)

(c) cos(at)u(t)

16. Find the Fourier transform of f1ðtÞ ¼ e�3tuðtÞ.
17. Find the Fourier transform of f ðtÞ ¼ e�3 tj j and sketch its time and frequency domain

representations. (Hint: Find a few points on the curve by substituting values for the variable.)

18. Prove the shift property of the Fourier transform.

19. Given x(t) ¼ e�atu(t) and h(t) ¼ e�btu(t), where a and b are constants greater than zero,

explain why it would be easier to evaluate the convolution x(t) * h(t) in the frequency domain.

20. A brief current pulse of duration 50 ms and amplitude 1 mA is presented to a cell membrane

with time constant 10 ms. Find the cell membrane voltage output.

Continued
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21. The ion exchange process of a cell is estimated to have the following impulse response:

hðtÞ ¼ e�4tuðtÞ.
(a) Explain what type of general information would be available to the researcher if this

estimation of h(t) were accurate.

(b) If sodium ions are injected into the system for two seconds in the form of a brief pulse

approximated by the equation xðtÞ ¼ 3uðtÞ � 3uðt� 2Þ, how would the cell respond to

(e.g., pump out ions) such input? Find the answer using time domain procedures.

(Hint: Convolve the input and the impulse response.)

22. An ECG recording of the electrical activity of the heart during ventricular fibrillation is

digitized, and the signal begins with the data sequence [–90.0, 10.0, –12.0, –63.0, 7.0, –22.0].

The units of the data sequence are given in mV. What is the z-transform of this data sequence

of the biosignal?

23. For the systems described by the following equations, determine which of the systems is

linear and which is not.

(a)
dy

dt
þ 2yðtÞ ¼ f 2ðtÞ

(b)
dy

dt
þ 3tyðtÞ ¼ t2f ðtÞ

(c)
dy

dt
þ 2yðtÞ ¼ f ðtÞ df

dt

(d) yðtÞ ¼ Ð t
�1 f ðtÞdt

24. Examine the characteristics of the digital filter

yðkÞ ¼ 1

4
xðkÞ þ 1

4
xðk� 1Þ þ 1

2
yðk� 1Þ:

Find the impulse response, H(z) and H0(O). Use MATLAB to calculate and plot |H0(O)| for

0 < O < p. Observe the difference between this filter and the filter in Example Problem

10.12. Why is this a better low-pass filter? What is the output if the input sequence is

xðkÞ ¼ 100 sin
p
2
kþ p

8

	 

? What is the output if the input sequence is xðkÞ ¼ 100uðkÞ?

25. Find the z-transform of

(a) xðkÞ ¼ uðkÞ
(b) xðkÞ ¼ akuðkÞ
(c) xðkÞ ¼ cosðb � kÞuðkÞ

26. Find the z-transform of the following:

(a) x½k� ¼ 1

2

� �k

uðkÞ
(b) x½k� ¼ ð cos OkÞu½k�

27. Find the first four outputs of the discrete system

y½k� � 3y½k� 1� þ 2y½k� 2� ¼ f ½k� 1�
if y½�1� ¼ 2, y½�2� ¼ 3, and f ½k� ¼ 3ku½k�:
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28. Find the first four outputs of the discrete system

y½k� � 2y½k� 1� þ 2y½k� 2� ¼ f ½k� 2�
if y½�1� ¼ 1, y½�2� ¼ 0, and f ½k� ¼ u½k�:

29. In MATLAB, design a routine to show that averaging random noise across many trials

approaches zero as the number of trials increases.

30. Accurate measurements of blood glucose levels are needed for the proper treatment of

diabetes. Glucose is a primary carbohydrate that circulates throughout the body and serves as

an energy source for cells. In normal individuals the hormone insulin regulates the levels of

glucose in the blood by promoting glucose transport out of the blood to skeletal muscle and

fat tissues. Diabetics suffer from improper management of glucose levels, and the levels of

glucose in the blood can become too high. Describe how fuzzy logic might be used in the

control of a system for measuring blood glucose levels. What advantages would the fuzzy

logic system have over a more conventional system?

31. Describe three different biosignal processing applications for which artificial neural networks

might be used. Give at least two advantages of artificial neural networks over traditional

biosignal processing methods for the applications you listed.

32. The fuzzy sets in Example Problem 11.28 have been calibrated so a person with a resting heart

rate of 95 beats per minute has a 75 percent degree of membership in the normal category and

a 25 percent degree of membership in the tachycardia category. A resting heart rate of 65

beats per minutes indicates a 95 percent degree of membership in the normal category. Draw

a graph of the fuzzy sets.
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