
FIR Filter Design

FIR Filter Design

In this section...

“FIR vs. IIR Filters” on page 1-17

“FIR Filter Summary” on page 1-18

“Linear Phase Filters” on page 1-18

“Windowing Method” on page 1-19

“Multiband FIR Filter Design with Transition Bands” on page 1-24

“Constrained Least Squares FIR Filter Design” on page 1-31

“Arbitrary-Response Filter Design” on page 1-37

FIR vs. IIR Filters
Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
impulse response (IIR) filters.

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.

1-17



1 Filter Design and Implementation

FIR Filter Summary

FIR Filters

Filter Design
Method Description Filter Functions

Windowing Apply window to truncated inverse
Fourier transform of desired “brick
wall” filter

fir1, fir2,
kaiserord

Multiband
with Transition
Bands

Equiripple or least squares approach
over sub-bands of the frequency range

firls, firpm,
firpmord

Constrained
Least Squares

Minimize squared integral error over
entire frequency range subject to
maximum error constraints

fircls, fircls1

Arbitrary
Response

Arbitrary responses, including
nonlinear phase and complex filters

cfirpm

Raised Cosine Lowpass response with smooth,
sinusoidal transition

firrcos

Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase
filters only. The filter coefficients, or “taps,” of such filters obey either an even
or odd symmetry relation. Depending on this symmetry, and on whether the
order n of the filter is even or odd, a linear phase filter (stored in length n+1
vector b) has certain inherent restrictions on its frequency response.

Linear
Phase
Filter Type

Filter
Order Symmetry of Coefficients

Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type I Even even: No
restriction

No
restriction

Type II Odd No restriction H(1) = 0

1-18



FIR Filter Design

Linear
Phase
Filter Type

Filter
Order Symmetry of Coefficients

Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No
restriction

The phase delay and group delay of linear phase FIR filters are equal and
constant over the frequency band. For an order n linear phase FIR filter, the
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude
response). This property preserves the wave shape of signals in the passband;
that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all
design type I and II linear phase FIR filters by default. Both firls and
firpm design type III and IV linear phase FIR filters given a 'hilbert' or
'differentiator' flag. cfirpm can design any type of linear phase filter,
and nonlinear phase filters as well.

Note Because the frequency response of a type II filter is zero at the Nyquist
frequency (“high” frequency), fir1 does not design type II highpass and
bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order and
returns a type I filter.

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff
frequency of �0 rad/s. This filter has magnitude 1 at all frequencies with
magnitude less than �0, and magnitude 0 at frequencies with magnitude
between �0 and �. Its impulse response sequence h(n) is

1-19



1 Filter Design and Implementation

This filter is not implementable since its impulse response is infinite and
noncausal. To create a finite-duration impulse response, truncate it by
applying a window. By retaining the central section of impulse response in
this truncation, you obtain a linear phase FIR filter. For example, a length 51
filter with a lowpass cutoff frequency �0 of rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s
theorem, this is the length 51 filter that best approximates the ideal lowpass
filter, in the integrated least squares sense. The following command displays
the filter’s frequency response in FVTool:

fvtool(b,1)

1-20



FIR Filter Design

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

Ringing and ripples occur in the response, especially near the band edge.
This “Gibbs effect” does not vanish as the filter length increases, but a
nonrectangular window reduces its magnitude. Multiplication by a window in
the time domain causes a convolution or smoothing in the frequency domain.
Apply a length 51 Hamming window to the filter and display the result using
FVTool:

b = 0.4*sinc(0.4*(-25:25));
b = b.*hamming(51)';
fvtool(b,1)

1-21



1 Filter Design and Implementation

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

Using a Hamming window greatly reduces the ringing. This improvement is
at the expense of transition width (the windowed version takes longer to ramp
from passband to stopband) and optimality (the windowed version does not
minimize the integrated squared error).

The functions fir1 and fir2 are based on this windowing process. Given a
filter order and description of an ideal desired filter, these functions return a
windowed inverse Fourier transform of that ideal filter. Both use a Hamming
window by default, but they accept any window function. See “Windows” on
page 3-2 for an overview of windows and their properties.

1-22



FIR Filter Design

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR
digital filter design. It resembles the IIR filter design functions in that it
is formulated to design filters in standard band configurations: lowpass,
bandpass, highpass, and bandstop.

The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with
cutoff frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to
the Nyquist frequency, half the sampling frequency. (Unlike other methods,
here Wn corresponds to the 6 dB point.) For a highpass filter, simply append
the string 'high' to the function’s parameter list. For a bandpass or bandstop
filter, specify Wn as a two-element vector containing the passband edge
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window
for the design. The vector window must be n+1 elements long. If you do not
specify a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the
filter order, cutoff frequency, and Kaiser window beta parameter needed to
meet a given set of specifications. Given a vector of frequency band edges and
a corresponding vector of magnitudes, as well as maximum allowable ripple,
kaiserord returns appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2
The fir2 function also designs windowed FIR filters, but with an arbitrarily
shaped piecewise linear frequency response. This is in contrast to fir1, which
only designs filters in standard lowpass, highpass, bandpass, and bandstop
configurations.

The commands

1-23



1 Filter Design and Implementation

n = 50;
f = [0 .4 .5 1];
m = [1 1 0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter
whose frequency-magnitude characteristics match those given by vectors f
and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents
the Nyquist frequency. m is a vector containing the desired magnitude
response at the points specified in f. (The IIR counterpart of this function
is yulewalk, which also designs filters based on arbitrary piecewise linear
magnitude responses. See “IIR Filter Design” on page 1-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying
the ideal desired filter than the fir1 and fir2 functions. These functions
design Hilbert transformers, differentiators, and other filters with odd
symmetric coefficients (type III and type IV linear phase). They also let you
include transition or “don’t care” regions in which the error is not minimized,
and perform band dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that
it minimizes the integral of the square of the error between the desired
frequency response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses
the Remez exchange algorithm and Chebyshev approximation theory to design
filters with optimal fits between the desired and actual frequency responses.
The filters are optimal in the sense that they minimize the maximum error
between the desired frequency response and the actual frequency response;
they are sometimes called minimax filters. Filters designed in this way
exhibit an equiripple behavior in their frequency response, and hence are also
known as equiripple filters. The Parks-McClellan FIR filter design algorithm
is perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their
minimization schemes. The next example shows how filters designed with
firls and firpm reflect these different schemes.

1-24



FIR Filter Design

Basic Configurations
The default mode of operation of firls and firpm is to design type I or type
II linear phase filters, depending on whether the order you desire is even or
odd, respectively. A lowpass example with approximate amplitude 1 from 0 to
0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes
b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition
band or “don’t care” region. A transition band minimizes the error more in
the bands that you do care about, at the expense of a slower transition rate.
In this way, these types of filters have an inherent trade-off similar to FIR
design by windowing.

To compare least squares to equiripple filter design, use firls to create
a similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

1-25



1 Filter Design and Implementation

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

The filter designed with firpm exhibits equiripple behavior. Also note that the
firls filter has a better response over most of the passband and stopband,
but at the band edges (f = 0.4 and f = 0.5), the response is further away from
the ideal than the firpm filter. This shows that the firpm filter’s maximum
error over the passband and stopband is smaller and, in fact, it is the smallest
possible for this band edge configuration and filter length.

Think of frequency bands as lines over short frequency intervals. firpm and
firls use this scheme to represent any piecewise linear desired function with
any transition bands. firls and firpm design lowpass, highpass, bandpass,
and bandstop filters; a bandpass example is

f = [0 0.3 0.4 0.7 0.8 1]; % Band edges in pairs

1-26



FIR Filter Design

a = [0 0 1 1 0 0]; % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1]; % Highpass filter amplitude
f = [0 0.3 0.4 0.5 0.8 1]; % Band edges in pairs
a = [1 1 0 0 1 1]; % Bandstop filter amplitude

An example multiband bandpass filter is

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];
a = [1 1 0 0 1 1 0 0 1 1 0 0 1 1];

Another possibility is a filter that has as a transition region the line
connecting the passband with the stopband; this can help control “runaway”
magnitude response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5 1];
a = [1 1 0.8 0.2 0 0]; % Passband, linear transition,

% stopband

The Weight Vector
Both firls and firpm allow you to place more or less emphasis on minimizing
the error in certain frequency bands relative to others. To do this, specify a
weight vector following the frequency and amplitude vectors. An example
lowpass equiripple filter with 10 times less ripple in the stopband than the
passband is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes

1-27



1 Filter Design and Implementation

w = [1 10]; % Weight vector
b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there
must be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, firpm and firls design
FIR filters with odd symmetry, that is, type III (for even order) or type IV
(for odd order) linear phase filters. An ideal Hilbert transformer has this
anti-symmetry property and an amplitude of 1 across the entire frequency
range. Try the following approximate Hilbert transformers and plot them
using FVTool:

b = firpm(21,[0.05 1],[1 1],'h'); % Highpass Hilbert
bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert
fvtool(b,1,bb,1)

1-28



FIR Filter Design

You can find the delayed Hilbert transform of a signal x by passing it through
these filters.

fs = 1000; % Sampling frequency
t = (0:1/fs:2)'; % Two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its
real part and the Hilbert transform of x as its imaginary part. For this FIR
method (an alternative to the hilbert function), you must delay x by half the
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples
xa = xd + j*xh; % Analytic signal

1-29



1 Filter Design and Implementation

This method does not work directly for filters of odd order, which require a
noninteger delay. In this case, the hilbert function, described in “Specialized
Transforms” on page 3-40, estimates the analytic signal. Alternatively, use
the resample function to delay the signal by a noninteger number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication
of the signal’s Fourier transform by an imaginary ramp function. That is, to
differentiate a signal, pass it through a filter that has a response H(�) = j�.
Approximate the ideal differentiator (with a delay) using firpm or firls with
a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi],'d');

For a type III filter, the differentiation band should stop short of the Nyquist
frequency, and the amplitude vector must reflect that change to ensure the
correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi],'d');

In the 'd' mode, firpm weights the error by 1/� in nonzero amplitude bands
to minimize the maximum relative error. firls weights the error by (1/�)2 in
nonzero amplitude bands in the 'd' mode.

1-30



FIR Filter Design

The following plots show the magnitude responses for the differentiators
above.

fvtool(b,1,bb,1)

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement
a technique that enables you to design FIR filters without explicitly defining
the transition bands for the magnitude response. The ability to omit the
specification of transition bands is useful in several situations. For example, it
may not be clear where a rigidly defined transition band should appear if noise
and signal information appear together in the same frequency band. Similarly,
it may make sense to omit the specification of transition bands if they appear
only to control the results of Gibbs phenomena that appear in the filter’s
response. See Selesnick, Lang, and Burrus [2] for discussion of this method.

1-31



1 Filter Design and Implementation

Instead of defining passbands, stopbands, and transition regions, the CLS
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or
bandstop cases), or passband and stopband edges (for multiband cases), for
the desired response. In this way, the CLS method defines transition regions
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper
and lower thresholds that contain the maximum allowable ripple in the
magnitude response. Given this constraint, the technique applies the least
square error minimization technique over the frequency range of the filter’s
response, instead of over specific bands. The error minimization includes
any areas of discontinuity in the ideal, “brick wall” response. An additional
benefit is that the technique enables you to specify arbitrarily small peaks
resulting from Gibbs’ phenomena.

There are two toolbox functions that implement this design technique.

Description Function

Constrained least square multiband FIR filter design fircls

Constrained least square filter design for lowpass and
highpass linear phase filters

fircls1

For details on the calling syntax for these functions, see their reference
descriptions in the Function Reference.

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to
design lowpass and highpass FIR filters. As an example, consider designing a
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized).
Further, define the upper and lower bounds that constrain the design process
as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

1-32



FIR Filter Design

To approach this design problem using fircls1, use the following commands:

n = 61;
wo = 0.3;
dp = 0.02;
ds = 0.008;
h = fircls1(n,wo,dp,ds);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

1-33



1 Filter Design and Implementation

Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise
constant magnitude response. In this case, you can specify a vector of band
edges and a corresponding vector of band amplitudes. In addition, you can
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower
bound -0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05

Design a CLS filter with impulse response order 129 that meets these
specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [-0.005 0.49 -0.03 0.98 -0.05];
h = fircls(n,f,a,up,lo);
fvtool(h,1)

1-34



FIR Filter Design

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters
with relative weighting of the error minimization in each band. The fircls1
function enables you to specify the passband and stopband edges for the least
squares weighting function, as well as a constant k that specifies the ratio of
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume
maximum allowable passband ripple of 0.02 and maximum allowable
stopband ripple of 0.004. In addition, add weighting requirements:

1-35



1 Filter Design and Implementation

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the
passband

To approach this using fircls1, type

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)

1-36



FIR Filter Design

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters
with arbitrary complex responses. It differs from the other filter design
functions in how the frequency response of the filter is specified: it accepts the
name of a function which returns the filter response calculated over a grid of
frequencies. This capability makes cfirpm a highly versatile and powerful
technique for filter design.

This design technique may be used to produce nonlinear-phase FIR filters,
asymmetric frequency-response filters (with complex coefficients), or more
symmetric filters with custom frequency responses.

1-37



1 Filter Design and Implementation

The design algorithm optimizes the Chebyshev (or minimax) error using
an extended Remez-exchange algorithm for an initial estimate. If this
exchange method fails to obtain the optimal filter, the algorithm switches
to an ascent-descent algorithm that takes over to finish the convergence to
the optimal solution.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain
characteristics.

Band Amplitude
Optimization
Weighting

[-1 -0.5] [5 1] 1

[-0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5

A linear-phase multiband filter may be designed using the predefined
frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
{'multiband', [5 1 2 2 2 1]}, [1 10 5]);

For the specific case of a multiband filter, we can use a shorthand filter design
notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...
[5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines
the frequency bands over which optimization is performed; note that there are
two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear
scale in FVTool:

fvtool(b,1)

1-38



FIR Filter Design

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this
range by changing the x-axis units to Frequency (Fs = 1 Hz).

1-39



1 Filter Design and Implementation

The filter response for this multiband filter is complex, which is expected
because of the asymmetry in the frequency domain. The impulse response,
which you can select from the FVTool toolbar, is shown below.

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If
we specify a negative offset value to the lowpass filter design function, the
group delay offset for the design is significantly less than that obtained for a
standard linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)

1-40



FIR Filter Design

Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set
changing the x-axis units to Frequency. The y-axis is in Magnitude Squared,
which you can set by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

1-41



1 Filter Design and Implementation

The group delay of the filter reveals that the offset has been reduced from
N/2 to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no
longer flat in the passband region. To create this plot, click the Group Delay
button on the toolbar.

If we compare this nonlinear-phase filter to a linear-phase filter that has
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or
29. Using b = cfirpm(29,[0 0.5 0.55 1],'lowpass'), the passband and
stopband ripple is much greater for the order 29 filter. These comparisons
can assist you in deciding which filter is more appropriate for a specific
application.

1-42


