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Abstract

If multiple defendants are jointly liable for a plaintiff’s harm, the court must deter-

mine the apportionments of the damages among them. Recently, in a series of papers,

Dehez and Ferey (2013, 2016a, 2016b) took a cooperative game theory approach, and

used the Shapley value and the weighted Shapley value to determine the shares es-

pecially in the case of sequential acts. In this paper, we argue that their allocation

rule is not fair if we take even a small random error into account. We alternatively

propose the stochastic Shapley value which extends the definition of the Shapley value

to stochastic cooperative games and show that it satisfies ex post efficiency, symmetry,

dummy, feasibility, fairness and convergence to the Shapley value.

JEL Classification Code: K41

Key Words: fairness, joint liability, stochastic cooperative game theory, stochastic Shap-

ley value, threshold

Running Head: Joint Liability and Stochastic Shapley Value

1 Introduction

Harms are often caused by more than one injurer. Examples abound. Several factories emit

toxical chemicals, causing water and ground pollution. Firms may engage in price-fixing col-
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lusion to extract consumers’ surpluses. A person may be injured by a product manufactured

unsafely by the contractor itself or its subcontractor. Traffic accidents commonly occur by

multiple vehicle collisions.1

If multiple parties or factors are involved in an accident, it may be difficult to determine

causation. A well known example is the case of Summers v. Tice that involves a plaintiff who

was injured by one of two hunters shooting in their direction. In this case, it is simultaneity

of the actions by two parties that makes it troublesome to determine causation, although one

of them surely caused the accident. However, if there are other (random) factors that may

have contributed to the accident, it becomes even more intricate to determine causation.

Once causation is established and so each of the defendants is found to be liable for the

plaintiff’s total harm, the defendants are called to be jointly and severally liable. Under the

rule of joint and several liability, the plaintiff is allowed to recover the full amount of damages

from any defendant, regardless of the particular injurer’s share of the liability. The rule of

joint and several liability is applied when either defendants acted jointly or the plaintiff’s

harm is indivisible. Depending on the apportionment rules, however, defendants may or

may not take an action for contribution from the other defendants. Under the rule of no

contribution, no one who paid more than their equitable share has the right to obtain any

reimbursement from other defendants. On the other hand, under the rule of contribution, a

defendant who paid more may obtain contribution from the other defendants. At common

law, there was no right to contribution, but the contribution rule has been gradually replacing

the no contribution rule from concerns that the no contribution rule may cause a serious

consequence against the social justice. Recently, various statutes have explicitly provided

for the contribution rule, and this trend creates a momentum for closely examining how to

apportion the damage amount among several joint tortfeasors.

Most literature on joint tortfeasors has focused on providing a rationale for the joint

and several liability rule from the aspect of (dynamic) efficiency,2 i.e., whether it gives

potential defendants a right incentive to take the efficient level of care.3 This paper, aside

from the efficiency issue, mainly addresses the issue of (static) fairness, what is a fair way

1For example, in Ybarra v. Spangard, the plaintiff was harmed during an operation under anesthesia

jointly by doctors and nurses. Also, in the Agent Orange case, millions of people in Vietnam suffered illness

due to the defoliant chemical made by several defendant companies.
2See, for example, Landes and Posner (1980), Shavell (1983), Kornhauser and Revesz (1989), Spier (1994),

Yi (1991) and Kahan (1996).
3There is also vast literature that examines the efficiency of joint and several liability in terms of its effect

on settlements. To name a few, see Kornhauser and Revesz (1994), Feess and Muehlheusser (2000) and Kim

and Song (2007).
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to apportion damages, given that care levels are already taken and the resulting damage

amount is determined. The literature on this line is relatively scant. To the best of our

knowledge, Ben-Shahar (1996, 2000) was the first to consider this issue by introducing the

cooperative game theory approach. Later, Braham and van Hees (2009) used the concept of

power indices. Recently, in a series of papers, Dehez and Ferey (2013, 2016a, 2016b) showed

that the Shapley value and the weighted Shapley value can be usefully applied to solving

the problem of sharing joint liability among defendants especially in the case of sequential

acts.4

Following the line of the literature, we take a cooperative game theory approach. In

case that an indivisible value or a cost is generated jointly by a group of players, many

solution concepts (allocation rules) have been proposed. The Shapley value is one of the

most widely used allocation rules which ensures static efficiency.5 In fact, it is proved that

the Shapley value is the unique allocation rule satisfying static efficiency, symmetry, dummy

and additivity.6

In determining the apportionment of damages among multiple defendants, the Shapley

value may appear to be fair in the sense that it satisfies symmetry requiring that if two

players contribute the same to any coalition, their share should be the same. In this paper,

however, we argue that it is not strictly fair in the following sense. Suppose that an accident

may occur only if the total sum of the defendant’s negligence meets the threshold of 10. If

the negligence of one defendant is 9 and the other’s negligence is 1, each defendant should

be liable for one half of the total damage, because neither could have caused the accident

alone.7 Considering the feature that they would be equally liable even if the first defendant

4 They used a peer group game by Branzei et al. (2002) within which a hierarchy representing a causation

relation is built-in. Their model is more general in the sense that it encompasses the simultaneous case which

corresponds to the case of a one-tier hierarchy.
5In this context, static efficiency means that the sum of allocations to each individual (or compensations

of each individual) must be the same as the total surplus (total damage). This property is built in the

definition of the allocation rule.
6See Shapley (1953) for the original definition and Hart (1989) for a survey on the concept and its

applications.
7 Stapleton (2013) defines a threshold case rather vaguely but quite generally. She defines it by a case

in which “an injury occurrence requires a certain amount of an element, but does not require more and is

not affected if there is more.” (p. 41) So, it includes the cases that each of multiple independent tortious

acts is a sufficient condition for the harm, (e.g., two independent fires were both large enough to destroy a

property), and that neither of the individual independent acts is sufficient but both are necessary to reach

the threshold, and that none of the acts is sufficient nor necessary to reach the threshold. In our example,

negligence of both defendants is necessary to reach the threshold because both satisfy a but-for test, in other
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was much more negligent, one could hardly say that the Shapley value allocation is fair in

this case. This problem occurs in cooperative games with a threshold level, i.e., a game in

which a surplus or a cost occurs only if the sum of individual contributions in a coalition

exceeds a certain threshold level.

To correct the problem, we add two ingredients explicitly into the structure of the con-

ventional cooperative game; negligence and uncertainty. First, we consider the negligence of

each individual explicitly, while it was only implicitly considered in Dehez and Ferey (2013).

Second, accidents usually do not occur deterministically but probabilistically. A particular

action of tortfeasors may or may not incur damages. Therefore, uncertainty is, in nature,

inherent in tort cases but most of the literature using a cooperative game theory approach

has assumed it away mainly for simplicity. Based on this, we consider a stochastic cooper-

ative game with a threshold level. In the example described above, the threshold level of

10 units is not absolute in reality. It may be affected by random events. It could be either

less than 10 or greater than 10 probabilistically. Also, the actual negligence may differ from

the observed negligence due to observation or measurement errors. With those random fac-

tors, either defendant may be solely liable for the damage. If one takes unpredictable events

(which always exist in reality) into account, the first defendant should pay a larger amount

of compensation than the second defendant, because the probability that he is solely liable

is higher.

In this paper, therefore, we propose a new allocation rule, what we call stochastic Shapley

value. Roughly speaking, it is to apportion damage among defendants by their expected

marginal contribution computed with respect to the conditional probability given that the

accident has occurred. This concept can be applied to a class of stochastic cooperative

games with a threshold value, which is quite vast. Consider, for example, a variation of the

pollution case that was introduced in Ferey and Dehez (2016a). Two firms negligently pour

toxic chemicals to a pond. Assume that there exists a threshold of 50 units above which

chemicals are lethal for fish in the pond. Assume that firm A and firm B poured 40 units

and 10 units respectively. The prediction by the Shapley value is that the two firms share

the damage equally, even though firm A was more negligent. In this case, the court should

take relative negligence seriously and this is consistent with the prediction by the stochastic

Shapley value. The famous case of Paul’s car is similar.8 Consider its slight variation.

words, both are factual causations.
8 The Paul’s car case is illustrated in the Restatement (Third) of Torts as follows: Able, Baker and

Charlie, acting independently but simultaneously, each negligently lean on Paul’s car, which is parked at the

lookout at the top of a mountain. Their combined force results in the car rolling over a diminutive curbstone
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Suppose that A and B negligently lean on Paul’s car parked at a scenic lookout of the top

of a mountain. If it requires a certain threshold level of force, say 10 units, to push the

car past the curbstone, and A and B pushed the car by the force of 7 units and 3 units

respectively in the same direction, it is fair that A is more liable than B contrary to the

Shapley value allocation. These examples suggest that the Shapley value does not reflect

enough information about degrees of relative negligence. None of the papers take account of

relative negligence explicitly in determining the apportionment rule. This paper addresses

the issue of how the degree of fault of each defendant can affect the sharing rule when the

probability of an accident depends on the negligence of each individual.

The stochastic Shapley value is to extend the concept of Shapley value to a stochastic

setting in which the value is stochastically determined. There are other allocation rules

that extend the Shapley value to a stochastic situation. For example, Charnes and Granot

(1973) proposed the concept of the prior Shapley value.9 But it is an ex ante concept.10 If

it is defined in ex ante terms, it cannot satisfy ex post efficiency, although it may satisfy ex

ante efficiency. Then, it cannot be used as a proper rule of apportioning damages, because

the sum of compensations may not cover the total amount of the damage that is actually

incurred. The allocation based on the stochastic Shapley value is, however, ex post efficient

and moreover feasible in the sense that each share is always nonnegative. It also satisfies

fairness requiring that a more negligent defendant is more liable for the resulting damage.11

Finally, we show under normal distribution that it converges to the Shapley value as the

variances of random terms go to zero, as long as all involved defendants are negligent.

Our result that the damage should be apportioned not equally to each defendant, but

based on their relative causal contributions to the plaintiff’s injury corresponds with the

case of Moore v. Johns-Mansville Sales Corp12 which rejects pro-rata liability in favor of

and plummeting down the mountain to its destruction. The force exerted by the push of any one actor

would have been insufficient to propel Paul’s car past the curbstone, but the combined force of any two of

them is sufficient.
9Ma et al. (2008) is another example.

10Charnes and Granot (1977) and Granot (1977) further developed a two-stage solution whereby a prior

payoff is promised in the first stage and it is adjusted to the realization of a random variable in the second

stage.
11Van den Brink (2001) also proposed a modification of Shapley value satisfying fairness, but the definition

of fairness is quite different. By his definition, an allocation rule is fair if, whenever a game is added,

allocations of symmetric players in the game increase (or decrease) by the same amount. This definition of

fairness is more or less closer to the fairness (or equal bargaining power) by Myerson (1977), rather than our

definition.
12 In this asbestos-related case, the Texas court rejected the contention that the defendants should bear
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apportioned liability based upon relative causation.13 To contrast the apportion based on

our concept with the Shapley value allocation, consider another actual case of Parker vs.

Bell Asbestos Mines, Ltd. The plaintiff sued for her husband’s death from lung cancer. Her

deceased husband, however, had been a heavy smoker for many years, so his death was due

to asbestos exposure or smoking. The jury found that smoking contributed sixty percent,

and inhaling asbestos forty percent, to his lung cancer. Accordingly, the court reduced

total damages, from $214,000, to $85,600 to reflect the percent of causation attributable to

asbestos exposure. This may serve as evidence that the stochastic Shapley value can be used

in apportioning damages to each defendant to reflect their expected marginal contributions.

The possibility that random factors can have a real effect on an injury occurrence com-

plicates the determination of causation as well as apportioning liability. As in the case of

Summers v. Tice, the but-for test can be ineffective. In fact, the but-for test provides a

too weak causation criterion, because passing the test is just a necessary condition for the

occurrence of the injury and so it may include some necessary but remote causes. In other

cases, which are often called overdetermined causation cases, each of multiple factors would

have been sufficient to produce the injury, but none of them was necessary for the injury.

However, the requirement that each factor should have been sufficient by itself seems too

restrictive. So, Hart and Hanoré (1959) and later Wright (1985) proposed an alternative cau-

sation criterion, so-called NESS (Necessary Element of a Sufficient Set), in overdetermined

cases. Under this criterion, an act is a cause of an injury if and only if it is a necessary

element of a set of antecedent actual conditions that is sufficient for the occurrence of the

injury. All of these criteria could be clearly applied to deterministic cases, but once some

stochastic element can be a factor to the consequence, it becomes obscure whether a partic-

ular act is necessary or sufficient to the consequence. For example, in the modified case of

Paul’s car with two defendants, suppose the threshold level of force is 10 units, and A and

B push the car with the force of 5 units respectively in the same direction. Then, neither

of the negligence is sufficient to the consequence but both are necessary for it. However, if

wind might be blowing possibly from the opposite direction, neither may be necessary. Or,

if A and B push the car with the force of 12 units respectively simultaneously in the same

direction, both are sufficient but neither is necessary. However, if one takes account of the

possibility of wind force, neither may be sufficient.

The paper is organized as follows. In Section 2, we illustrate the problem of the Shapley

the liability pro rata even though the degree of relative causation may not have been established scientifically.
13 The pro rata contribution rule which is used, for example, under the current Massachusetts tort law,

has been challenged by many legal scholars and practitioners. See Baltay (2001).
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value in a simple deterministic model. In Section 3, we introduce the stochastic Shapley

value in a general stochastic model. In Section 4, we propose an alternative allocation rule,

what we call normalized Shapley value and compare it with the stochastic Shapley value. In

Section 5, we apply the Stochastic Shapley value to an alternative model with measurement

errors. Section 6 contains concluding remarks. All the proofs are in the Appendix.

2 Illustrative Model

For an illustrative purpose, we consider a simple deterministic model. A plaintiff (P ) can

suffer damage from two defendants, D1 and D2. Let xi be the negligence of Di. We assume

that if x1 + x2 ≥ z, an accident occurs with certainty and incurs damage d to P , where z is

the threshold level of negligence that triggers an accident. This is what Stapleton calls a

threshold case. In this paper, we only consider threshold cases.

Since the two defendants are jointly liable for the damage, we can use an approach of

the cooperative game theory to determine how to share compensation to the plaintiff. For

simplicity, we normalize d to one.

This situation can be considered as a transferrable utility game 〈N, v〉 where N =

{1, 2, · · · , n} is the set of players (n = 2) and v(S) is the characteristic function for any

coalition S ⊂ N . The associated characteristic function is then defined by

v(S) =

{
1 if

∑
i∈S xi ≥ z

0 otherwise .
(1)

As an allocation rule, we can use the Shapley value. It is defined by the average marginal

contribution of player i, i.e.,

ϕi =
1

n!

∑
π∈ΠN

∆i(Si(π)), (2)

where ΠN is the set of all permutations of N , Si(π) is the set of players preceding i in π and

∆i(S) = v(S ∪ {i})− v(S) is a marginal contribution of player i to coalition S.

If the damage amount is apportioned between the defendants according to the Shapley

value, it is computed as

ϕ1 =
1

2
[v(1)− v(∅)] +

1

2
[v(1, 2)− v(2)] =

1

2
(3)

if xi ∈ (0, z), i = 1, 2 and x1 + x2 ≥ z.
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Similarly, if xi ≥ z for i = 1, 2, v(i) = v(N) = 1 for i = 1, 2, so we have

ϕ1 =
1

2
[v(1)− v(∅)] +

1

2
[v(1, 2)− v(2)] =

1

2
(4)

for xi ≥ z, i = 1, 2.

Finally, if xi ≥ z and xj < z for j 6= i,

ϕi =
1

2
[v(i)− v(∅)] +

1

2
[v(1, 2)− v(j)] = 1, (5)

while ϕj = 0.

To summarize, we have

ϕi =


1
2

if x1 + x2 ≥ z, 0 < x1, x2 < z
1
2

if x1, x2 ≥ z

1 if xi ≥ z, xj < z, j 6= i

0 otherwise.

(6)

It is interesting to note that for any asymmetric (x1, x2) with x1 6= x2 < z and x1 + x2 ≥ z,

the jointly liable defendants equally share the damage as (ϕ1, ϕ2) = (1
2
, 1

2
) regardless of his

relative negligence. (See Figure 1.) This is the case even when x1 = ε and x2 = z−ε for some

small ε > 0. This implies that the allocation rule based on Shapley value is not compatible

with the contribution rule or the proportionate rule whereby multiple tortfeasors are liable

for the damage in proportion to their relative negligence.14

3 General Stochastic Model

In this section, we consider a general stochastic model. Suppose multiple potential defendants

Di, i = 1, 2, · · · , n may inflict damage to P . An accident occurs with some probability that

depends on
∑n

i=1 xi. That is, an accident may not occur when
∑n

i=1 xi ≥ z and, similarly,

an accident may occur even when
∑n

i=1 xi < z. More specifically, an accident occurs if∑n
i=1 yi ≥ z where yi = xi + εi. Here, εi is an idiosyncratic random term and accordingly yi

is the actual contribution of Di to the occurrence of an accident. In the example of Paul’s

car, εi could be interpreted as a sum of all external random forces including wind force. We

assume that the random error term εi is i.i.d. and follows a normal distribution with mean

14 Most U.S. states adopt a conditional proportionate rule whereby defendants are responsible for an

amount equal to their percentage of fault unless the plaintiff is found to be more than 50% or 51% responsible

for the accident.
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zero and variance σ2.15 Since εi is a sum of all external idiosyncratic shocks, it is natural

to assume that the distribution does not depend on the care levels which are determined by

the defendants. The damage amount d is again normalized to one. Note that the damage

amount does not depend on the care levels. This is to make our analysis focus on threshold

cases.16

We begin our analysis by defining a stochastic cooperative game à la Ma et al. (2008)

which basically adapts Suijs and Borm (1999).

Definition 1 A stochastic cooperative game is defined by G = 〈N, {XS}S⊂N〉 where N is

the set of players and XS ∈ L1(R) is the stochastic characteristic function assigning to a

coalition S a stochastic payoff with finite expectation.

A stochastic cooperative game is distinguished from a standard cooperative game only in

that the value of the characteristic function is stochastic.

In our model, the stochastic characteristic function is given by

XS =

{
1 if

∑
i∈S yi ≥ z

0 otherwise .
(7)

It is convenient to note that XN is a random variable such that

XN = t =

{
1 if

∑
i∈N yi ≥ z

0 otherwise .
(8)

We now define a stochastic Shapley value by modifying the definition of the extended

Shapley value proposed by Ma et al. (2008).

Definition 2 For a stochastic cooperative game G = 〈N, {XS}S⊂N〉, the stochastic Shapley

value of player i is defined by

ϕi(G, t) =
1

n!

∑
π∈ΠN

E [∆i(Si(π))|t] , (9)

where ∆i(S) = XS∪{i} −XS for i 6∈ S.

15 We assume a normal distribution of the error term, because it is well known that the normal distribution

approximates many natural phenomenon including measurement errors. See Wikipedia Contributors (2019).
16 According to the definition of Stapleton (2013), more of a causal element than the threshold does not

affect an injury in a threshold case.
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Although we take expectations in the definition of ϕi, the stochastic Shapley value is

not an ex ante concept. It is an ex post concept in the sense that it is the average marginal

contribution on the condition that t = 0, 1 is realized, i.e., the accident has occurred or not.

Therefore, it is distinguished from the prior Shapley value by Charnes and Granot (1973)

which is defined in an ex ante term.

Given x = (x1, x2, · · · , xn), let Gx = {Gx | εi ∼ N(0, σ2),∀i ∈ N} and consider any

allocation rule φ defined on Gx × {0, 1}, i.e., φ : Gx × {0, 1} → Rn. A list of axioms for the

allocation rule are in order.

Definition 3 (Efficiency) An allocation rule φ is (ex post) efficient if
∑

i∈N φi(Gx, t) = t

for all Gx ∈ Gx and for all t.

Definition 4 (Symmetry) An allocation rule φ is symmetric if φi(Gx, t) = φj(Gx, t) when-

ever i and j are substitutes, i.e., XS∪{i} = XS∪{j} for any S ⊂ N with i, j 6∈ S.

Definition 5 (Dummy) An allocation rule φ satisfies dummy if φi(Gx, t) = 0 for any null

player i, i.e., XS∪{i} = XS for any (i 6∈)S ⊂ N .

We will suppress Gx if there is no chance of confusion. Besides the standard axioms

described above, we are interested in the following additional axioms.

Definition 6 An allocation rule φ is feasible if 0 ≤ φi(t) ≤ t, for all i ∈ N , for all t.

Definition 7 An allocation rule φ is fair (monotonic) if φi ≥ φj whenever xi ≥ xj for i 6= j.

Definition 8 An allocation rule φ satisfies convergence if limσ→0 φi = 1
n

.

Note that the axiom of symmetry implies that φi = φj if xi = xj,
17 but does not imply that

φi > φj if xi > xj. The axiom of convergence says that the stochastic Shapley value should

converge to the deterministic Shapley value, ( 1
n
, 1
n
, · · · , 1

n
), as the variance of εi goes to zero.

It may help get some insights for the axioms to consider a simple case of n = 2.

17This is because E[XS∪{i} | t] = P(yi +
∑

k∈S yk ≥ z | t) = P(yi ≥ z −
∑

k∈S yk | t) = P(εi ≥
z−

∑
k∈S yk − xi | t), E[XS∪{j} | t] = P(yj ≥ z−

∑
k∈S yk | t) = P(εj ≥ z−

∑
k∈S yk − xi | t) if xi = xj , and

thus E[XS∪{i} | t] = E[XS∪{j} | t], i.e., i and j are substitutes, which implies that φi = φj by the axiom of

symmetry.
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Efficiency Since

E[XS|t = 1] = P[
∑
i∈S

yi ≥ z|
∑
i∈N

yi ≥ z]

= P[
∑
i∈S

εi ≥ z −
∑
i∈S

xi|
∑
i∈N

εi ≥ z −
∑
i∈N

xi], (10)

the stochastic Shapley value is computed as

ϕ1(t = 1) =
1

2
E[∆1(∅)|t = 1] +

1

2
E[∆1({2})|t = 1]

=
1

2
E[X{1}|t = 1] +

1

2
(E[X{1,2}|t = 1]− E[X{2}|t = 1])

=
1

2
− 1

2
P[ε2 ≥ z − x2|ε1 + ε2 ≥ z − (x1 + x2)]

+
1

2
P[ε1 ≥ z − x1|ε1 + ε2 ≥ z − (x1 + x2)]

=
1

2
+

1

2
P[z − x1 ≤ ε1 ≤ z − x2|ε1 + ε2 ≥ z − (x1 + x2)] (∵ i.i.d)

=
1

2
+

1

2
∆C , (11)

ϕ2(t = 1) =
1

2
− 1

2
∆C , (12)

where

∆C :=
P[z − x1 ≤ ε1 ≤ z − x2 ∧ ε1 + ε2 ≥ z − (x1 + x2)]

P[ε1 + ε2 ≥ z − (x1 + x2)]
.

From (11) and (12), we can directly check that ϕ1(t = 1) + ϕ2(t = 1) = 1. This implies

that (ϕ1, ϕ2) satisfies ex post efficiency for the case that t = 1. It is not difficult to see that

ϕ1(t = 0)+ϕ2(t = 0) = 0, i.e., ex post efficiency is satisfied.18 Hereafter, we will simply write

ϕi(t = 1) as ϕi, since the case that t = 0 (the case of no accident) is not in our interest.

Feasibility Equations (11) and (12) imply that ϕi ∈ [0, 1] for i = 1, 2, since ∆C ≤ 1. That

is, the allocation according to the stochastic Shapley value is feasible.

Fairness (Monotonicity) In equations (11) and (12), ∆C is a difference in conditional

probabilities that D1 is solely liable and that D2 is solely liable conditional on the occurrence

of an accident (i.e, y1 + y2 ≥ z). It is clear that 0 ≤ ∆C ≤ 1, as long as x1 ≥ x2. Since

18See Proposition 1 for the proof.
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∆C ≥ 0, we have ϕ1 ≥ ϕ2, if and only if x1 ≥ x2, i.e., the stochastic Shapley value satisfies

fairness (monotonicity). Contrary to the deterministic case, the stochastic Shapley value

implies that a defendant who is more negligent should compensate the plaintiff more. That

is, the stochastic Shapley value reflects the negligence of each defendant when there are two

defendants.

Convergence If x1 + x2 = z, we have

P[ε1 + ε2 ≥ z − (x1 + x2)] = P[ε1 + ε2 ≥ 0] =
1

2

since P[ε1 + ε2 ≥ 0] = P[ε1 + ε2 ≤ 0] = 1
2

due to the symmetry of f(ε). Also, since ε follows

a normal distribution with mean zero and variance σ2, we have

f(ε) =
1√
2πσ

e−
ε2

2σ2 .

Lemma 1 P[ε ≥ α] = 1
2

(
1− erf

(
α√
2σ

))
, where erf(x) = 2√

π

∫ x
0
e−t

2
dt, erf(0) = 0 and

limx→∞ erf(x) = 1.

In the Appendix, we provide a proof for a more generalized version of Lemma 1.

For xi > 0, (∀i ∈ N), using this lemma with the symmetry of f(ε), we have

P[x2 ≤ ε1 ≤ x1 ∧ ε1 + ε2 ≥ 0]

=
1

2
(P[−x1 ≤ ε2 ≤ −x2 ∧ ε1 + ε2 ≤ 0] + P[x2 ≤ ε1 ≤ x1 ∧ ε1 + ε2 ≥ 0])

=
1

2
(P[ε1 ≤ x1 ∧ ε2 ≥ −x1]− P[ε1 ≤ x2 ∧ ε2 ≥ −x2])

=
1

2
(P[ε1 ≤ x1]P[ε2 ≥ −x1]− P[ε1 ≤ x2]P[ε2 ≥ −x2])

=
1

2

(
1

4

(
1 + erf

(
x1√
2σ

))2

− 1

4

(
1 + erf

(
x2√
2σ

))2
)

=
1

8

((
1 + erf

(
x1√
2σ

))2

−
(

1 + erf

(
x2√
2σ

))2
)

(13)

and

ϕ1 =
1

2
+

1

8

((
1 + erf

(
x1√
2σ

))2

−
(

1 + erf

(
x2√
2σ

))2
)
, (14)

ϕ2 =
1

2
− 1

8

((
1 + erf

(
x1√
2σ

))2

−
(

1 + erf

(
x2√
2σ

))2
)
. (15)

12



Therefore, (ϕ1, ϕ2) converges to (1
2
, 1

2
) as σ goes to zero, since limσ→0 erf( xi√

2σ
) = 1. That is,

as the effect of other factors than the defendants’ negligence becomes smaller, (i.e., σ goes

to zero), the stochastic Shapley value converges to the deterministic Shapley value.

If x1 = z > 0 and x2 = 0, however, we have

ϕ1 =
1

2
+

1

8

((
1 + erf

(
x1√
2σ

))2

− 1

)
, (16)

ϕ2 =
1

2
− 1

8

((
1 + erf

(
x1√
2σ

))2

− 1

)
. (17)

Then, as σ → 0, (ϕ1, ϕ2) → (7/8, 1/8) which is different from the deterministic Shapley

value. It is not surprising that a non-negligent player (xi = 0) pays a positive compensation,

because there is a small probability that even a non-negligent defendant is solely liable for

the damage, unless xi = 0 implies εi = 0. That is, the convergence of the stochastic Shapley

value is guaranteed only if xi > 0 for all i.

Now, we have the following general proposition.

Proposition 1 The stochastic Shapley value (ϕi(t))i∈N satisfies ex post efficiency, symme-

try, dummy, feasibility, fairness and convergence for any xi ∈ (0, 1), for any i ∈ N , for any

t.

Unfortunately, however, the stochastic Shapley value is not the unique allocation rule

satisfying efficiency, symmetry and dummy. In the next section, we will introduce another

allocation rule satisfying all the properties and even fairness.

4 Normalized Shapley Value

We propose an alternative allocation rule satisfying efficiency, fairness and convergence, what

we call the normalized Shapley value.

Definition 9 For a stochastic cooperative game G = 〈N, {XS}S⊂N〉, the normalized Shapley

value of player i is defined by

φi(G, t) =
1

n!P[XN = t]

∑
π∈ΠN

E [∆i(Si(π))] , (18)

where ∆i(S) = XS∪{i} −XS for i 6∈ S.

13



The idea of this allocation rule is to normalize the allocation rule (obtained without using

conditional probability) so as to satisfy the efficiency condition. Thus, the unconditional

expectation of a characteristic function is

E[XS] = P[
∑
i∈S

yi ≥ z]

= P[
∑
i∈S

εi ≥ z −
∑
i∈S

xi]. (19)

For n = 2, we have

φ1 =
1

2P[XN = 1]
E[∆1(∅)] +

1

2P[XN = 1]
E[∆1({2})]

=
1

2P[XN = 1]
E[X{1}] +

1

2P[XN = 1]
(E[X{1,2}]− E[X{2}])

=
P[ε1 ≥ z − x1]

2P[ε1 + ε2 ≥ z − (x1 + x2)]
+

P[ε1 + ε2 ≥ z − (x1 + x2)]

2P[ε1 + ε2 ≥ z − (x1 + x2)]
− P[ε2 ≥ z − x2]

2P[ε1 + ε2 ≥ z − (x1 + x2)]

=
1

2
+

P[z − x1 ≤ ε ≤ z − x2]

2P[ε1 + ε2 ≥ z − (x1 + x2)]
, (20)

φ2 =
1

2
− P[z − x1 ≤ ε ≤ z − x2]

2P[ε1 + ε2 ≥ z − (x1 + x2)]
. (21)

In particular, if x1 + x2 = z, we have

1

2
P[ε1 + ε2 ≥ z − (x1 + x2)] =

1

2
P[ε1 + ε2 ≥ 0] =

1

4
.

Due to Lemma 1, we have

φ1 =
1

2

(
1 + erf

(
x1√
2σ

)
− erf

(
x2√
2σ

))
, (22)

φ2 =
1

2

(
1 + erf

(
x2√
2σ

)
− erf

(
x1√
2σ

))
. (23)

It is clear that (φ1, φ2) satisfies efficiency. Also, it satisfies fairness because φ1 ≥ φ2 if

and only if x1 ≥ x2. Finally, we can show that as σ goes to zero, the normalized stochastic

Shapley value converges to the Shapley value. If x1, x2 > 0, (φ1, φ2) → (1/2, 1/2), since

limσ→0 erf
(

x1√
2σ

)
= limσ→0 erf

(
x2√
2σ

)
= 1.19

19Convergence of the normalized Shapley value holds even for xi = 0. See the appendix for the proof for

the general convergence property of the normalized Shapley value. (Claim 1)
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A drawback of the normalized Shapley value is that the allocations may not be feasible.

To see this, consider

∆N :=
P[z − x1 ≤ ε ≤ z − x2]

P[ε1 + ε2 ≥ z − (x1 + x2)]

as a counterpart for ∆C . It is not difficult to observe the possibility that ∆N > 1,20 so that

φ2 = 1
2
− 1

2
∆N < 0, since it is not a conditional probability. This possibility does not occur

in the stochastic Shapley value because it is a conditional probability. The main difference

between the stochastic Shapley value and the normalized Shapley value, therefore, lies simply

in whether we use conditional expectations or unconditional expectations.

5 Stochastic Shapley Value in a Model with Measure-

ment Errors

So far, we assumed that uncertainty comes in the process that an act causes a damage.

In this section, we consider an alternative model in which uncertainty comes in a form of

measurement errors.

Again, we focus only on threshold cases, so assume that an accident occurs if
∑n

i=1 xi ≥ z

where xi denotes the actual value of negligence of Di. Let yi denote the measured value for

xi.
21 Since the judge can only observe yi, not xi, the judicial decision must be based on yi,

not on xi.

The difference between xi and yi is a measurement error which is denoted by εi. So, we

have yi = xi + εi. We assume that εi is i.i.d. and follows a normal distribution with mean

zero and variance σ2. The damage amount is again normalized to one.

Below, we briefly show that the stochastic Shapley value preserves the main properties

of efficiency, feasibility, fairness and convergence in this model of measurement errors.

Efficiency Since

E[XS|t = 1] = P[
∑
i∈S

xi ≥ z|
∑
i∈N

xi ≥ z]

= P[
∑
i∈S

εi ≤
∑
i∈S

yi − z|
∑
i∈N

εi ≤
∑
i∈N

yi − z], (24)

the stochastic Shapley value is computed as

20A numerical example is provided in the Appendix.
21We are abusing notation here.
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ϕ1(t = 1) =
1

2
E[∆1(∅)|t = 1] +

1

2
E[∆1({2})|t = 1]

=
1

2
E[X{1}|t = 1] +

1

2
(E[X{1,2}|t = 1]− E[X{2}|t = 1])

=
1

2
− 1

2
P[ε2 ≤ y2 − z|ε1 + ε2 ≤ (y1 + y2)− z]

+
1

2
P[ε1 ≤ y1 − z|ε1 + ε2 ≤ (y1 + y2)− z]

=
1

2
+

1

2
P[y2 − z ≤ ε1 ≤ y1 − z|ε1 + ε2 ≤ (y1 + y2)− z]

=
1

2
+

1

2
∆M , (25)

ϕ2(t = 1) =
1

2
− 1

2
∆M , (26)

where

∆M :=
P[y2 − z ≤ ε1 ≤ y1 − z ∧ ε1 + ε2 ≤ (y1 + y2)− z]

P[ε1 + ε2 ≤ (y1 + y2)− z]
.

Since ϕ1(t = 1) + ϕ2(t = 1) = 1, it is clear that (ϕ1, ϕ2) satisfies ex post efficiency for the

case that t = 1.

Feasibility Feasibility is also clear from equations (25) and (26), because ∆M ≤ 1 imply

that ϕi ∈ [0, 1] for i = 1, 2.

Fairness (Monotonicity) Fairness also follows directly from ∆M > 0 as long as y1 > y2.

Measurement errors allow the possibility that y1 < y2 even if x1 > x2. Note that all

that matters in determining shares of the damage is yi, not xi, since xi is not observable.

Therefore, our allocation rule is fair in the sense that ϕ1 ≥ ϕ2, if and only if y1 ≥ y2. Note

that x1 ≥ x2 does not necessarily imply ϕ1 ≥ ϕ2.

Convergence For yi > 0, (∀i ∈ N), we have

ϕ1 =
1

2
+

1

8

((
1 + erf

(
y1√
2σ

))2

−
(

1 + erf

(
y2√
2σ

))2
)
, (27)

ϕ2 =
1

2
− 1

8

((
1 + erf

(
y1√
2σ

))2

−
(

1 + erf

(
y2√
2σ

))2
)
. (28)

Therefore, as measurement errors tend to be very small (i.e., σ goes to zero), (ϕ1, ϕ2) con-

verges to (1
2
, 1

2
), which is the deterministic Shapley value, since limσ→0 erf( yi√

2σ
) = 1.
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6 Conclusion

In this paper, we proposed the concept of the stochastic Shapley value to resolve the puzzle

we face in sharing damages in joint liability cases. We argued that the allocation rule based

on the Shapley value is not fair in the sense that it does not, in general, reflect the relative

negligence among defendants, but that the stochastic Shapley value yields fair allocations

by capturing the possibility of random disturbances.

Considering the universal reality that a random factor is important in many accident

occurrences, we believe that our concept of the stochastic Shapley value has a good potential

of being applied to actual legal cases. For instance, there are a large amount of litigation on

asbestos-related diseases and deaths. What makes litigation on asbestos difficult is to prove

causation. Above all, those who develop asbestos-related diseases show no signs of illness for

a long time after asbestos exposure. It can take from 10 to 40 years or more for symptoms of

an asbestos-related condition to appear. Thus, during the latency period, the victim could

work in several workplaces and other factors than asbestos exposure could cause the disease.

Our concept could be useful especially in such a situation where possible causes are multiple

and uncertain.

Although our concept of stochastic Shapley value was developed in the context of damage

(cost) sharing, it could be also applied to the problem of value sharing. For example, it can

give a useful guideline for allocating the prize from obtaining a patent as a consequence of

joint research to each research unit if the contribution of each research unit cannot be clearly

determined. Or, generally, allocating the reward for the output of any team project would

be a proper subject to which our concept is usefully applicable. We look forward to seeing

its enriched applications in the future.
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Appendix

Proof of Proposition 1:

Efficiency The proof is almost same as the proof that original Shapley value satisfies

efficiency. First, choose π = (1, 2, . . . , n) ∈ ΠN . For this permutation, we have

E[∆1(S1(π))|t] = E[X{1}|XN = t]− E[X∅|XN = t]

E[∆2(S2(π))|t] = E[X{1,2}|XN = t]− E[X{1}|XN = t]

...

E[∆n(Sn(π))|t] = E[X{1,2,...,n}|XN = t]− E[X{1,2,...,n−1}|XN = t].

By summing up all of these equations, we get∑
i∈N

E[∆i(Si(π))|t] = E[X{1,2,...,n}|XN = t]− E[X∅|XN = t] = E[XN |XN = t] = t.

Similarly, the above equation holds for any permutation π ∈ ΠN . Adding up all these terms

for each π and dividing by n!, we get∑
i∈N

ϕi(G, t) =
1

n!

∑
i∈N

∑
π∈ΠN

E[∆i(Si(π))|t] =
1

n!

∑
π∈ΠN

∑
i∈N

E[∆i(Si(π))|t] =
1

n!

∑
π∈ΠN

t = t.‖

Symmetry For π ∈ ΠN , let π′ be a permutation of N interchanging i and j for π.

This gives a one-to-one correspondence from ΠN to itself. It is enough to show that

E[∆i(Si(π))|t] = E[∆j(Sj(π
′))|t]. (If this holds, then we get ϕi(G, t) = ϕj(G, t) by sum-

ming up all of these over π ∈ ΠN (π′ ∈ ΠN).)

If i precedes j in π, Si(π) = Sj(π
′) =: S. Then E[XS∪{i}|XN = t] = E[XS∪{j}|XN = t] and

E[∆i(Si(π))|t] = E[XSi(π)∪{i}|t]− E[XSi(π)|t] = E[XSj(π′)∪{j}|t]− E[XSj(π′)|t] = E[∆j(Sj(π))|t].

If j precedes i, j ∈ Si(π). If we put S ′ = Si(π)− {j}, then Si(π
′)− {i} = S ′ and

E[∆i(Si(π))|t] = E[XSi(π)∪{i}|t]− E[XSi(π)|t] = E[XS′∪{i,j}|t]− E[XS′∪{j}|t]
= E[XS′∪{i,j}|t]− E[XS′∪{i}|t] = E[XSj(π′)∪{j}|t]− E[XSj(π′)|t] = E[∆j(Sj(π

′))|t].

In both cases, we have E[∆i(Si(π))|t] = E[∆j(Sj(π
′))|t], which completes the proof. ‖
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Dummy Player Let i be a dummy player. By definition of a dummy player, we have

E[∆i(Si(π))|t] = E[XSi(π)∪{i}|t]− E[XSi(π)|t] = 0, and thus ϕi(G, t) = 0. ‖

Feasibility We have

E[∆i(S) | t] = E[XS∪{i} −XS | t]
= P(XS∪{i} = 1 ∧XS = 0 | t)− P(XS∪{i} = 0 ∧XS = 1 | t)
= P(

∑
j∈S

yj < z ∧
∑

j∈S∪{i}

yj ≥ z | t)− P(
∑
j∈S

yj ≥ z ∧
∑

j∈S∪{i}

yj < z | t)

=

∫ ∞
0

h(k)(
k∑
j=1

yj = z − s | t)P(yi ≥ s | t)ds

−
∫ ∞

0

h(k)(
k∑
j=1

yj = z + s | t)P(yi ≤ −s | t)ds

> 0,

for i 6∈ S = {y1, · · · , yk}, where h(k) is the joint pdf of y1, · · · , yk conditional on t, since

h(k)(z − s | t) > h(k)(z + s | t) and P(yi ≥ s | t) > P(yi ≤ −s | t) for any s ≥ 0 due to

xi > 0 and the assumption of normal distributions. It is also clear that ∆i(S) ≤ 1 for any

S. Therefore, we have ϕi(t = 1) = 1
n!

∑
π∈ΠN

E [∆i(Si(π)) | t = 1] ∈ [0, 1]. ‖

Fairness (Monotonicity) For general n, the stochastic Shapley value of D1 is

ϕ1 =
∑

S⊂N\{1}

s!(n− 1− s)!
n!

E[∆1(S)|t = 1]

=
∑

S⊂N\{1}

s!(n− 1− s)!
n!

(
P

 ∑
i∈S∪{1}

εi ≥ z −

 ∑
i∈S∪{1}

xi

∣∣∣∣∣∑
i∈N

εi ≥ z −

(∑
i∈N

xi

)
−P

[∑
i∈S

εi ≥ z −

(∑
i∈S

xi

)∣∣∣∣∣∑
i∈N

εi ≥ z −

(∑
i∈N

xi

)])
, (29)

where s = |S|. We can compute ϕ2, · · · , ϕn similarly.

To show that ϕi ≥ ϕj if and only if xi ≥ xj, we assume without loss of generality that
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x1 ≥ x2 ≥ · · · ≥ xn. We start by defining the following collections of coalitions

A = {S ⊂ N\{1} | 2 6∈ S},
B = {S ⊂ N\{1} | 2 ∈ S},
A′ = {S ⊂ N\{2} | 1 6∈ S},
B′ = {S ⊂ N\{2} | 1 ∈ S}.

The collections of coalitions A and B partition N \ {1} in the sense that A ∪ B = 2N\{1}

and A ∩ B = ∅. Similarly, {A′, B′} is a partition of N \ {2}. Also, note that A = {S ⊂
N \ {1, 2}} = A′. Then, by using the sets, a stochastic Shapley value can be decomposed

into two components

ϕ1 =
∑
S∈A

s!(n− 1− s)!
n!

E[∆1(S)|t = 1] +
∑
S∈B

s!(n− 1− s)!
n!

E[∆1(S)|t = 1]

≡ L1 +M1, (30)

ϕ2 =
∑
S∈A′

s!(n− 1− s)!
n!

E[∆2(S)|t = 1] +
∑
S∈B′

s!(n− 1− s)!
n!

E[∆2(S)|t = 1]

≡ L2 +M2. (31)

First, consider S ∈ A(= A′). We have

x1 ≥ x2

⇔ z −

 ∑
i∈S∪{1}

xi

 ≤ z −

 ∑
i∈S∪{2}

xi


⇔ P

 ∑
i∈S∪{1}

εi ≥ z −

 ∑
i∈S∪{1}

xi

∣∣∣∣∣t
 ≥ P

 ∑
i∈S∪{2}

εi ≥ z −

 ∑
i∈S∪{2}

xi

∣∣∣∣∣t
 ,

which yields L1 ≥ L2.

Now, consider S ∈ B. Since 2 ∈ S, we can write S as S = S0∪{2} where S0 ⊂ N \{1, 2}.
Similarly, we can define S ′ ≡ S0 ∪ {1}. Then, a mapping between S and S ′ is a one-to-one

correspondence with the mapping between B and B′. Then, similarly, we have

P

 ∑
i∈S0∪{1,2}

εi ≥ z −

 ∑
i∈S0∪{1,2}

xi

∣∣∣∣∣t
− P

 ∑
i∈S0∪{2}

εi ≥ z −

 ∑
i∈S0∪{2}

xi

∣∣∣∣∣t


≥ P

 ∑
i∈S0∪{1,2}

εi ≥ z −

 ∑
i∈S0∪{1,2}

xi

∣∣∣∣∣t
− P

 ∑
i∈S0∪{1}

εi ≥ z −

 ∑
i∈S0∪{1}

xi

∣∣∣∣∣t
 ,
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yielding M1 ≥M2. This concludes that ϕ1 ≥ ϕ2. ‖

Convergence We will use the notation

pS ≡ P

[∑
i∈S

εi ≥ z −
∑
i∈S

xi

∣∣∣∣∣∑
i∈N

εi ≥ 0

]
= P

[∑
i∈S

εi ≥ αS

∣∣∣∣∣∑
i∈N

εi ≥ 0

]
(32)

where αS ≡ z −
∑

i∈S xi for convenience. Note that αS > 0 iff S 6= N . Then the stochastic

Shapley value is given by

ϕi =
∑

S⊂N\{i}

s!(n− 1− s)!
n!

(pS∪{i} − pS). (33)

Our claim is that limσ→0 pS = 0 for S ( N . We have

0 ≤ pS =
P
[∑

i∈S εi ≥ αS ∧ εi ≥ 0
]

P
[∑

i∈N εi ≥ 0
] (34)

= 2P

[∑
i∈S

εi ≥ αS ∧ εi ≥ 0

]
(35)

≤ 2P

[∑
i∈S

εi ≥ αS

]
(36)

= 1− erf

(
αS√
2sσ

)
→ 0 (37)

as σ → 0. (Here we use the lemma 1.) Thus limσ→0 pS = 0 for S 6= N and

lim
σ→0

ϕi =
(n− 1)!

n!
=

1

n

since pN = 1. ‖

Proof of lemma 1: Define

Rα ≡ {(ε1, . . . , εn) ∈ Rn|ε1 + · · ·+ εn ≥ α}.

Then, we have

Pn(α) =

∫
Rα

g(ε1, . . . , εn)dεn . . . dε1,

21



where

g(ε1, . . . , εn) = f(ε1) · · · f(εn) =
1

(
√

2πσ)n
e−(ε21+···+ε2n)/2σ2

. (38)

Since equation (38) shows that the function g depends only on the radius from the origin,

r =
√
ε21 + · · ·+ ε2n, the integral value does not change even if rotating the integration interval

around the origin. Define a plane by

Tα := {(ε1, . . . , εn) ∈ Rn|ε1 + · · ·+ εn = α}.

By using the fact that the distance from the origin to the plane is |α|/
√
n, we have

Pn(α) =

∫ ∞
α/
√
n

∫ ∞
−∞
· · ·
∫ ∞
−∞

1

(
√

2πσ)n
e−(ε21+···+ε2n)/2σ2

dεn · · · dε1

=
1√
2πσ

∫ ∞
α/
√
n

e−ε
2
1/2σ

2

dε1.

Then, by using erf(x) = 2√
π

∫ x
0
e−t

2
dt and ε1 = x/

√
2σ, we can see that

Pn(α) =
1

2

(
1− erf

(
α√
2nσ

))
.

‖

Claim 1 (Convergence of the Normalized Shapley Value) Suppose
∑

i∈N xi = z, xi ≥
0 for all 1 ≤ i ≤ n and #{i|xi = 0} = m < n. Then

lim
σ→0

φi(t = 1) =

 1
n−m if xi > 0

0 if xi = 0
(39)

which is same as the deterministic Shapley value and

lim
σ→0

ϕi(t = 1) =


∑

n−m−1≤s≤n−1
m!s!

(m−n+1+s)!n!

[
1− 1

π
arccos

(√
s+1
n

)]
if xi > 0

n−m
mπ

∑
n−m−1≤s≤n−1

m!s!
(m−n+1+s)!n!

arccos
(√

s+1
n

)
if xi = 0.

(40)

Proof of Claim 1: First, we have

qS ≡ P

[∑
i∈S

εi ≥ z −
∑
i∈S

xi

]
=

1

2

(
1− erf

(
αS√
2sσ

))
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by lemma 1. Then the normalized Shapley value φi of player i is

φi = 2
∑

S⊂N\{i}

s!(n− 1− s)!
n!

(qS∪{i} − qS)

=
∑

S⊂N\{i}

s!(n− 1− s)!
n!

[
erf

(
αS√
2sσ

)
− erf

(
αS∪{i}√
2(s+ 1)σ

)]
.

Without loss of generality, we will assume that x1 = · · · = xm = 0 and xm+1, . . . , xn > 0. We

have limσ→0 qS = 0 if αS > 0 and limσ→0 qS = 1
2

if αS = 0, i.e. [m+1, n] ≡ {m+1, . . . , n} ⊆ S.

For m+ 1 ≤ i ≤ n, we have

lim
σ→0

φi =
∑

[m+1,n]\{i}⊂S⊂N\{i}

s!(n− 1− s)!
n!

(lim
σ→0

qS = 0)

=
∑

n−m−1≤s≤n−1

(
m

n− 1− s

)
s!(n− 1− s)!

n!

=
m!

n!

∑
n−m−1≤s≤n−1

s!

(m− n+ 1 + s)!

=
m!(n−m− 1)!

n!

∑
n−m−1≤s≤n−1

(
s

n−m− 1

)
=
m!(n−m− 1)!

n!

∑
n−m−1≤s≤n−1

[(
s+ 1

n−m

)
−
(

s

n−m

)]
=
m!(n−m− 1)!

n!

n!

m!(n−m)!
=

1

(n−m)

and by efficiency and symmetry, we have limσ→0 φi = 0 for 1 ≤ i ≤ m.

In the case of stochastic Shapley value, we will use the definition of pS again. Our aim

is to prove the following equation : If αS = z −
∑

i∈S xi = 0, then

pS = 2P

[∑
i∈S

εi ≥ 0 ∧
∑
i∈N

εi ≥ 0

]
= 1− 1

π
arccos

(√
s

n

)
.

We know that the area represented by

RS ≡ {(ε1, . . . , εn) ∈ Rn|
∑
i∈S

εi ≥ 0 ∧
∑
i∈N

εi ≥ 0}
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is an intersection of two half regions determined by two planes

µS ≡ {(ε1, . . . , εn) ∈ Rn|
∑
i∈S

εi = 0}

µN ≡ {(ε1, . . . , εn) ∈ Rn|
∑
i∈N

εi = 0}.

Since the probability distribution function

g(ε1, . . . , εn) = f(ε1) · · · f(εn) =
1

(
√

2πσ)n
e−(ε21+···+ε2n)/2σ2

has spherical symmetry (i.e. only depends on r =
√
ε21 + · · ·+ ε2n), the value of

P

[∑
i∈S

εi ≥ 0 ∧
∑
i∈N

εi ≥ 0

]
=

∫
RS

g(ε1, . . . , εn)dε1dε2 · · · dεn

only depends on the angle between two planes µS and µN . More precisely, let

vS ≡ (a1, a2, . . . , an)

vN ≡ (1, 1, . . . , 1)

where ai = 1 if i ∈ S and 0 otherwise. These vectors are normal vectors of µS, µN respectively,

and the angle θ between two vectors are

cos θ =
〈vS, vN〉
||vS|| · ||vN ||

=
s√
sn

=

√
s

n

for S 6= ∅. Then we have

pS = 2P

[∑
i∈S

εi ≥ 0 ∧
∑
i∈N

εi ≥ 0

]
= 2

π − θ
2π

= 1− 1

π
arccos

(√
s

n

)
.

Now we will find limσ→0 ϕi. Without loss of generality, we will assume that x1 = · · · =

xm = 0 and xm+1, . . . , xn > 0. Then αS = 0 if and only if [m+ 1, n] := {m+ 1, . . . , n} ⊆ S.

24



For m+ 1 ≤ i ≤ n, by the previous observation, we have

lim
σ→0

ϕi =
∑

[m+1,n]\{i}⊆S⊆N\{i}

s!(n− 1− s)!
n!

pS∪{i} (lim
σ→0

pS = 0)

=
∑

[m+1,n]\{i}⊆S⊆N\{i}

s!(n− 1− s)!
n!

[
1− 1

π
arccos

(√
s+ 1

n

)]

=
∑

n−m−1≤s≤n−1

(
m

n− 1− s

)
s!(n− 1− s)!

n!

[
1− 1

π
arccos

(√
s+ 1

n

)]

=
∑

n−m−1≤s≤n−1

m!s!

(m− n+ 1 + s)!n!

[
1− 1

π
arccos

(√
s+ 1

n

)]
.

Note that limσ→0 ϕi is same for m + 1 ≤ i ≤ n. Also, by symmetry, limσ→0 ϕi is same for

1 ≤ i ≤ m. Now put

lim
σ→0

ϕi =

a if 1 ≤ i ≤ m

b if m+ 1 ≤ i ≤ n.

By efficiency, we have ma+ (n−m)b = 1, so

a =
1

m

(
1− (n−m)

∑
n−m−1≤s≤n−1

m!s!

(m− n+ 1 + s)!n!

[
1− 1

π
arccos

(√
s+ 1

n

)])
.

By the way, we have∑
n−m−1≤s≤n−1

m!s!

(m− n+ 1 + s)!n!
=

∑
n−m−1≤s≤n−1

(
m

n− 1− s

)
s!(n− 1− s)!

n!
=

1

n−m

so the above equation is same as

a =
n−m
mπ

∑
n−m−1≤s≤n−1

m!s!

(m− n+ 1 + s)!n!
arccos

(√
s+ 1

n

)
.

‖
A numerical Example for ∆N > 1: Take σ = 1, x1 = 4, x2 = 0, z = 2 so that x1 +x2 > z.
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We have

P[ε1 + ε2 ≥ z − (x1 + x2)] =
1

2

(
1− erf

(
z − (x1 + x2)

2σ

))
=

1

2
(1− erf(−1))

= 0.92135...

P[z − x1 ≤ ε ≤ z − x2] =
1

2

(
erf

(
z − x2√

2σ

)
− erf

(
z − x1√

2σ

))
=

1

2

(
erf(2

√
2)− erf(−

√
2))
)

= 0.97721...

Therefore, it leads to

∆N =
P[z − x1 ≤ ε ≤ z − x2]

P[ε1 + ε2 ≥ z − (x1 + x2)]
= 1.06063... > 1.
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Figure 1. (ϕ1, ϕ2) in the deterministic case
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