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Abstract

The network theory developed by physicists has several critical drawbacks in characterizing

the structure of social networks. First, they largely neglect considering the link cost and the

link benefit that agents usually take into account in forming their links. Second, they view a

social network as a consequence of unilateral decisions of agents, not of bilateral decisions of

linking parties, although a link of an agent can be formed only after he obtains the consent

of the other side. Third, there is no logical justification for the assumption of preferential

attachment upon which their analysis relies heavily. In this paper, we provide several models

that overcome the three drawbacks. By analyzing the models, we can explain preferential

attachment as rational equilibrium behavior. The main idea is that people are not certain of

the value that they can obtain from forming a link with someone. Based on this assumption,

we will argue that a person has an incentive to form a link with another who has many links

because the number of his links can convey some information about his value.
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1 Introduction

Many economic interactions rely on social networks. Just as physical networks like telecom-

munications network or Internet do, social networks based on solid interpersonal relationships

enable or facilitate exchange of valuable information or transactions among agents on a net-

work. Thus, understanding the structure of networks has been recognized as important to

explaining many natural or economic/social phenomena.

In the economics literature, there has been a significant development in the theory of

network formation since the seminal article by Jackson and Wolinsky (1996).1 On the other

hand, in the physics literature, network evolution models have been developed to offer an

explanation for some specific features of networks, for example, the emergence of hubs and

the power law.2 Indeed, link distributions in many networks including even social networks

are found to follow the power law.3

Barabási and Albert (1999) model the scale-free network4 based on the evolution and

preferential attachment to explain the emergence of a hub and the power law.5 According

to them, a network can have hubs if nodes enter the population sequentially so that earlier

comers have higher chances to be linked with others. If new nodes are more likely to attach

a link to a node connected to more links, a hub will emerge more rapidly and the network

will follow the power law. Their argument appears convincing, but it has several critical

drawbacks at least in explaining social network structures. First, the argument neglects the

reality that people form links by comparing their benefit and cost from the links. Second,

it fails to capture the feature that a social network is a consequence of bilateral decisions

of a pair of people, not of their unilateral decisions, in other words, a person’s link cannot

be attained solely by his wish to form the link, but can be formed only after he obtains

1To name a few, see Dutta & Mutuswami (1997), Bala & Goyal (2000), Jackson & van den Nouweland
(2005) and Jackson & Watts (2002). For an extensive survey, see Jackson (2005).

2The power law says that the distribution of nodes with a certain number of links follows a power function.
3For example, Liljeros et al. (2001) showed the distribution of the number of sexual partners decays as

a scale-free power law. Ahn (2005) recently studied the network structure of the closest friends (that can
be linked with each other after mutual agreement) in the CyWorld which is one of the most popular online
communities, and found that the degree distribution in the network follows a pattern close to the power law.

4A scale-free network is a network in which the distribution of connectivity is extremely uneven in the
sense that some nodes act as very connected hubs using a power-law distribution.

5Evidences for preferential attachment have been documented in literature. See, for example, Jeong
et al. (2003) identified the evidence of preferential attachment in the science citation network, the actor
collaboration network, the science coauthorship network.
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the consent of the other. Third, a logical justification for the assumption of preferential

attachment is lacking. No explanation is provided for why people prefer to attach their

links to others who have more links. The assumption of preferential attachment may be

reasonable if links are formed unilaterally, but it seems not convincing in situations in which

forming a link requires mutual consent, because a proposal of a newcomer (who has no link)

to form a link with an incumbent who has many links will be unlikely to be accepted by the

incumbent.

In this paper, we provide several models that overcome the three drawbacks. By analyzing

the models, we can explain preferential attachment as rational equilibrium behavior.

The fundamental assumption driving our result is that people are not certain of the value

that they can obtain to form a link with someone. Based on this assumption, we will argue

that a person has an incentive to form a link with another who has many links because the

number of links of a person can convey some information about his value, in an economic

jargon, the number of links can be a signal of the value of the person.6 Then, why a person

with many links would be willing to accept the new comer with no link? This is possible

because no link of a new comer is not a signal that the value of the new comer is low. His

linklessness is a consequence of no chance of being connected, but not a consequence of his

low value. Therefore, if the ex ante probability that a person is valuable is reasonably high, it

is expected to be beneficial for an incumbent to accept the proposal of a new comer to form

a link with him. To the best of our knowledge, our work seems the first paper in literature

on network formation that views a link with a neighbor as an experience good,7 in the sense

that each agent does not realize the true value of others before he pays a price (linking cost)

to form a link, thereby interacting with another.

The paper is organized as follows. In Section 2, we briefly review the physical literature

related to network formation/evolution. After introducing some relevant definitions from the

graph theory in Section 3, we provide the basic model in Section 4. In Section 5, we analyze

the problem of network formation in the case that new entrants are informed of the order

of entry of the existing population members. In Section 6, we analyze the alternative but

more realistic case that new entrants are not informed. In Section 7, we consider far-sighted

6Economists use the word “signal” to mean an observable variable containing some information about an
unobservable characteristic. This concept has been widely used in economics since Spence (1973).

7Economists classify goods roughly into two categories, search goods and experience goods. The former
refers to goods whose quality can be ascertained by consumers before purchase, and the latter refers to goods
whose quality is learned only after purchase. This taxonomy follows from Nelson (1970).
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agents who make a decision to sever their link strategically not in a way to maximize their

one-period payoff. In Section 8, we discuss the implication of bounded rationality that is

implicitly assumed in the physics literature and derive some simulation results based on the

assumption of bounded rationality. Section 9 contains concluding remarks and some caveats.

2 Related Literature

In a pioneering work, Price (1965) demonstrated that the distributions of in-degrees and

out-degrees in citation networks of science articles both follow the power law. In his sub-

sequent paper (1976), he provided an analytic explanation for this phenomena and called

the underlying force cumulative advantage which is essentially the same as preferential at-

tachment named by Barabási and Albert (1999). His exposition is based on the assumption

that when a new node (scientific article) is added into a network, the probability that the

node will cite another existing node is proportional to the in-degree of the cited node, k. If

the distribution of in-degrees is denoted by Pk, Pk ∼ k−(2+1/m) where m is the average of

out-degrees.

Although Price (1965) is relevant to explaining citation networks, it is not so satisfactory

as to explain diverse networks (including www) that exist in the real world. Barabási and

Albert (1999) provide a model of undirected networks by assuming that the probability that

a new node j and an existing node i are linked is given by ki/
∑

l∈Nj−1
kl, where Nj−1 is the

set of nodes that has existed prior to node j.

Bianconi and Barabási (2001) introduce the concept of fitness into the model. The fitness

ηi of a node i is determined randomly from a distribution ρ(η). Then, the probability that a

new node j is linked with a node i is given by ηiki/
∑

l∈Nj−1
ηlkl. Under this assumption, even

a late comer can be a new hub if its fitness is high enough. This can explain the observation

of low correlation between the number of links of a node and its age. The concept of fitness

is analogous to the value in our model. But, our model has an important distinction from

their model in that the value itself is not observable to a new entrant, so that the decision

of an entrant cannot be based on the value itself.

In the economics literature, Jackson and Wolinsky (1996) is seminal in the sense that

they first introduced a formal model of the social network formation with the important

feature that forming a link is costly.8 Their model is innovative as well in the sense that

8Aumann and Myerson (1988) who considered the network formation process as a non-cooperative game
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they depart from the traditional non-cooperative game theoretic approach by assuming that

a link between two nodes (agents) is formed by the bilateral decision of the agents. This

view has been inherited to many subsequent authors. Our paper also borrowed their view

of bilaterality.

The original paper by Jackson and Wolinsky (1996) involves the static model and the

static solution concept, what they call, pairwise stability, although their model and their

solution concept can be easily interpreted as a dynamic one. Watts (2001) first provided

a dynamic network formation model and showed the possible disparity between the static

stability and the dynamic stability in a deterministic dynamic model. Jackson and Watts

(2002) considered a stochastic dynamic model by introducing randomness into the model

and showed that the dynamic process of network formation will not get stuck at an unsta-

ble network, if the process is stochastic so that any network can be reached with positive

probability. While, in most dynamic models including Watts (2001) and Jackson and Watts

(2002), agents are assumed to be myopic so as to neglect the reaction of others when they

decide to add or sever a link, there are a few of articles that consider farsighted agents who

make linking decisions by taking account of its subsequent effect on others’ linking decision

in the future. Watts (2002) and Page, Wooders and Kamat (2005) are notable ones among

them.

3 Preliminaries

Let N be the set of players (or agents). We define a graph (or network) g on N by a set

of links (a pair of linked players), i.e., g ≡ {(i, j) | i.j ∈ N, i 6= j}. We denote by g + (i, j)

the graph obtained by adding the link (i, j) to g, and by g − (i, j) the graph obtained by

deleting the link (i, j) from g. If g′ ⊂ g, g′ is called a subgraph of g. We denote the number

of links in g by |g|. A player j is called adjacent to player i or a neighbor to player i in g

if (i, j) ∈ g. The number of neighbors to player i in g is called the degree of player i and

denoted by d(i; g). If d(i; g) = 0, we call player i isolated in g.

We say that i and j are (indirectly) connected if there is a path between them, i.e., a

sequence {i, i1, i2, · · · , ik, j} such that (i, i1), (i1, i2), · · · , (ik, j) ∈ g. If there is a path between

i and j in g for all distinct pair of players i, j ∈ N , we call g connected. If g is not connected, it

is partitioned into more than one connected subgraph called component, C(g). A component

preceded Jackson and Wolinsky (1996), but they did not consider the linking cost.
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C(g) is said to be empty if |C(g)| = 0. If g has only one nonempty component, we say that

g satisfies [UNC].

4 Model

We consider a dynamic model in which one agent enters the population sequentially in each

period, t = 1, 2, · · · ,∞. Let Nt = {1, 2, · · · , t} be the set of agents in period t. Agent i is

called the youngest (or foremost junior) of Nt. Agents in Nt−1 are seniors (or predecessors)

to agent t. In particular, agent t − 1 is called the immediate senior to agent t. The value

of agent t is vt. If agent i 6= t is linked with the agent t, he can share the value of vt, for

example, by accessing the information that agent t has. In other words, from the link (i, t),

agent i and agent t both enjoy the total value of vi + vt. We assume that there is no benefit

from indirect connections. For example, if (i, j), (j, k) ∈ g, the total value that agent i can

get from this network is simply vi + vj, not vi + vj + vk.
9

The value of vt is private information of agent t, i.e., no agent i 6= t is a priori informed

of vt. In the game theoretic jargon, we call vt the type of agent t. For simplicity, we assume

that vt is either L or H where L < H, and that vt is i.i.d. with Prob(vt = H) = α ∈ (0, 1).

At each period t, a new entrant into the population, who maximizes his net benefit,

chooses a single agent from Nt−1 to propose to link with him. If the proposed accepts the

proposal made by agent t, the link is formed. Forming a link incurs c(> 0) to both parties.

We assume that L < c < H and that

M ≡ αH + (1− α)L > c. [A1]

Under this assumption, if a new comer has no information about another agent’s type, he

prefers linking with him to not linking. Thus, this assumption excludes the possibility that

an entrant is not willing to link with any other. Also, due to this assumption, the proposed

always accepts the proposal.

An agent can realize the true value of his neighbor in one period of interaction after

forming a link. Upon realizing that the neighbor’s value is L, an agent may sever his link.

Thus, each period consists of two stages. In the first stage, the entrant forms a link with an

9If agents can get some benefit from indirect connections as well, they may have an incentive to behave
strategically, since their utility would also depend on the decision of other agents. This would complicate
the analysis significantly.
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existing agent, and in the second stage, an existing agent can sever his link. More specifically,

(i, j) is severed in the period of max{i, j}+ 1, if either vi = L or vj = L.

We assume that all agents are myopic in the sense that they do not consider the possibility

that their current decision will affect future entrants’ decisions.10 Although there are many

agents interacting with each other in this model, the model will be analyzed as if it were a

single-person decision problem in each period, as far as we assume myopic agents.

We will perform our analysis, based on two alternative assumptions; one corresponding

to a case that each entrant can tell the seniority, that is, the entry order of existing agents

perfectly (Section 5), and the other corresponding to a more realistic case that he cannot

tell the seniority at all (Section 6).

5 When the Seniority of the Population is known to

the New Entrant

Let the graph formed at period t be gt ≡ (gt,1, gt,2). The former is a graph obtained by agent

t’s linking decision and the latter is a graph obtained after agent t − 1 and his neighbor

exercise the option of deleting their link.

Let αt(i) be the agent t’s posterior belief or probability that vi = H (evaluated in the

beginning of period t). We will use notation of i Ât j if player t strictly prefers linking with i

to linking with j, or equivalently, if αt(i) > αt(j), and i ∼t j if player t is indifferent between

linking with i and j, of equivalently, if αt(i) = αt(j).

We will start our analysis from t = 2. It is clear that (1, 2) ∈ g2,1 = g2,2. At t = 3, agent

3 links to either agent 1 or agent 2, since α3(1) = α3(2) = α so that 1 ∼3 2. Without loss

of generality, assume that (2, 3) ∈ g3,1. In the second stage of t = 3, agent 1 or agent 2 can

sever his link if either v1 = L or v2 = L. So, we have g3,2 = {(2, 3)} with probability (1−α2)

and g3,2 = {(1, 2), (2, 3)} with probability α2.

Consider the decision of agent 4. If g3,2 = {(2, 3)}, it implies that (1, 2) has been deleted,

in turn implying that either v1 = L or v2 = L. Thus, the posterior probability that v1 = H

(or v2 = H) is α/(1 + α). Since the probability that v3 = H is α, agent 4 forms a link with

agent 3. In this case, no link between agent 1 and agent 2 is a bad signal for both v1 and

v2. If g3,2 = {(1, 2), (2, 3)}, agent 4 links either to agent 1 or to agent 2, because they are

10If agents are not myopic, their decisions to sever a link can be affected. We will consider this possibility
in Section 7.
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sure to be H. In this case, a link between agent 1 and agent 2 is a good signal for both of

their values. In the second stage, link (2, 3) may be deleted in both cases if either agent 2

or agent 3 turns out to be L. Then, agent 5 faces similar situations, and so on.

We can generalize our reasoning as follows.

Lemma 1 If (i, j) ∈ gt−1,2 for i, j < t− 1, then αt(i) = αt(j) = 1.

Proof. If vi = L, (i, j) 6∈ gt−1,2, since the link (i, j) should have been severed by j 6= t − 1.

The same argument holds for the case that vj = L. ‖

This lemma says that a player linked with other than the youngest must be a H type.

If (i, t− 1) ∈ gt−1,2, we cannot be sure that vi = H, because neither i nor t− 1 is given the

opportunity to sever the link until the second stage of period t. We provide a sequence of

lemmas characterizing the optimal decision of agents and the resultant network structure.

Lemma 2 For i 6= t− 1, (i) t− 1 Ât i if d(i; gt−1,2) = 0, (ii) t− 1 ≺t i if (i, j) ∈ gt−1,2 for

some j < t− 1, and (iii) t− 1 Ât i if (i, t− 1) ∈ gt−1,2 and d(i; gt−1,2) = 1.

Proof. See the appendix.‖

Lemma 3 If d(i; gt,τ ) = 0, then d(i; gt′,τ ′) = 0 for all t′ ≥ t, τ, τ ′ = 1, 2.

Proof. If d(i; gt,τ ) = 0, t Ât+1 i by Lemma 2(i), implying that d(i; gt+1,τ ) = 0. Induction

leads to d(i; gt′,τ ) = 0 for all t′ > t. ‖

This lemma implies that a once isolated agent will remain isolated forever.

Lemma 4 There is the unique nonempty component in gt,τ for any t and τ .

Proof. See the appendix.

This lemma says that the network evolves with maintaining connectivity except for iso-

lated players.

From Lemma 2 together with Lemma 3 and 4, we can infer that an entrant links to one

of his remote (or not immediate) seniors if there is a link between them, while otherwise he

links just to his immediate senior and that the latter case occurs only when all the previous

links except the most recent link has been deleted; otherwise, [UNC] implies that the agent
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to whom the youngest senior links cannot have degree one. The intuition for this decision

rule is that the preservation of such an old (not recent) link signals the high value of the

linking agents.

Now, we will define the notion of “preferential attachment.” By the property of “prefer-

ential attachment,” we will mean that all agents rationally link to one of the agents with the

largest number of links. Then, we have the following proposition.

Proposition 1 When each entrant can tell the seniority of his predecessors, there is an

equilibrium in which the property of preferential attachment is satisfied.

Proof. See the appendix.

Note that preferential attachment is not the unique rational behavior outcome. For

example, if agent t links randomly with some remote senior linked with another remote

senior and links with his immediate senior if there is no such remote senior, it is also a

rational behavior but does not satisfy preferential attachment, because agent t− 1 may link

with a remote senior with degree one. In other words, there are also other equilibria in

which preferential attachment is not satisfied. In this sense, we can say that preferential

attachment holds but only weakly in this case.

6 When the Seniority of the Population is unknown to

the New Entrant

In this section, we consider a more realistic case that a new entrant does not tell the order

of the entries of the existing agents.

To illustrate, let us start by considering g2. Clearly, g2,1 = g2,2 = {(1, 2)}. At period 3,

player 3 links with either player 1 or player 2. Assume that (2, 3) ∈ g3,1. Then, (1, 2) can be

deleted if v1 = L or v2 = L. If g3,2 = {(2, 3)}, player 4 will link to either player 2 or player

3, because α4(1) = α/(1 + α), α4(2) = α4(3) = α/2 + α/2(1 + α). If g3,2 = {(1, 2), (2, 3)},
player 4 will link with player 2 since α4(2) = 1.

It is easy to see that Lemma 1 and Lemma 2 cannot be carried over to this case of

uninformed players. However, we can provide a counterpart for them in terms of the degree

which is observable.

Lemma 5 At any t, if d(i; gt−1,2) ≥ 2, αt(i) = 1.
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Proof. See the appendix.

This lemma says that the degree of a low type must be at most one. However, this lemma

does not imply that a player whose degree is one must be of L type because he may be the

immediate senior to the new entrant (whose type can be H) or a remote senior who severed

his links except one.

Lemma 6 For any t, (i) i ∼t j for any i, j such that d(i; gt−1,2) = d(j; gt−1,2) ≥ 2, (ii)

i Ât j for any i, j such that d(i; gt−1,2) ≥ 2 > d(j; gt−1,2) and (iii) i Ât j for any i, j such

that d(i; gt−1,2) = 1 > d(j; gt−1,2) = 0.

Proof. See the appendix.

Due to Lemma 6(iii), the counterpart for Lemma 3 holds.

Lemma 7 Lemma 3 holds when the seniority is unknown.

Proof. It is clear from Lemma 6(iii) since d(t− 1; gt−1,2) = 1.

Lemma 6 and Lemma 7 suggest that an entrant links to one of his seniors whose degree

is more than one if any, while otherwise he links to one of seniors with degree one. The latter

case is possible only when there is only one link involved with the last entrant. In fact, in the

equilibrium, one player becomes a hub (a center) and each entrant links to a hub, thereby

forming a star except isolated players. In this network, only one player can have the degree

of more than one.

The result of rational preferential attachment is strengthened in this case of uninformed

players, as summarized in the following proposition, and accordingly we can say that prefer-

ential attachment holds strongly in this case. Again, this is the consequence of the signalling

effect of a hub.

Proposition 2 When each entrant cannot tell the seniority of his predecessors, the property

of preferential attachment is satisfied in equilibrium. Moreover, preferential attachment is

the only equilibrium outcome.

Proof. This is clear from the above argument.
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7 Far-Sighted Agents

In this section, we assume that agents are not myopic but far-sighted. So, when they make

a decision, they take into account the possibility that their decision will affect the decision

of future entrants.

We assume that each agent maximizes discounted future net benefits. Let the discount

factor be δ(> 0). To accommodate the possibility of strategic behavior, we will assume that

agent t can sever his link at any period t′ ≥ t + 1.

Since it is always beneficial in ex ante terms for an existing agent to form a link with the

new entrant under [A1], an L type agent has an incentive to pretend to be a H type, while

a H type has no incentive to pretend to be an L type. If agents are so far-sighted that they

behave strategically to affect the linking decision of future entrants, equilibria characterized

so far will not be valid.

To illustrate, consider the case of informed agents. Suppose that g3,1 = {(1, 2), (1, 3)}.
If agents were myopic, the link (1, 2) would be severed when v1 = L or v2 = L. If they are

far-sighted, however, they may want to maintain this link, because a deletion conveys a bad

signal to the entrant and thus, he will propose a new link to neither of them. Of course, such

a feint will be profitable only when the benefit (of increasing the probability of obtaining a

new link) exceeds the cost of maintaining a link with a low type neighbor. Specifically, they

have an incentive to postpone severing the link one period if

c− L ≤ δ

2
(M − c), [A2]

or equivalently, δ ≥ 2 c−L
M−c

or α ≥ (2
δ

+ 1) c−L
H−L

. Thus, as δ or α is higher, the benefit from

feigning gets higher, so players are more likely to postpone deleting their links.

Now, consider the case of uninformed agents. Suppose again that g3,1 = {(1, 2), (1, 3)}.
When v2 = L, agent 1 has an incentive to maintain his link with agent 2 if

c− L ≤ δ(M − c).11 [A3]

Note that it is more difficult for the myopic equilibrium to be sustainable in the case of

uninformed case, because the gain that agent 1 can get from one-period postponing is larger

as far as he can get an additional link with higher probability (probability one).

11If v1 = L, agent 2 gains nothing by postponing severing his link (regardless of v2 = H or L), because
subsequent entrants will keep forming links with agent 1 anyhow.
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Proposition 3 Assume that agents are far-sighted. (i) When agents are informed, the

myopic equilibrium characterized by Lemma 2 is sustainable if and only if [A2] does not

hold. (ii) When agents are uninformed, the myopic equilibrium characterized by Lemma 6 is

sustainable if and only if [A3] does not hold.

Proof. See the appendix.

Henceforth, let us focus on the interesting case that [A2] (or [A3] respectively) holds so

that the myopic equilibrium is not sustainable. It is too complicated to fully characterize the

equilibrium in either case (of informed agents or uninformed agents), since the characteriza-

tion will depend on each realization of vt. But, we can provide the intuitive description for

the equilibrium configuration. Postponing severing a link is beneficial to early entrants since

it significantly increases the chance of obtaining another link with a new entrant. So, all

agents in earlier periods maintain their links for some periods regardless of their neighbor’s

type, which is called a pooling equilibrium in the game theoretic jargon.12 However, if t is

very large, the benefit from postponing deleting a link is very small, because the chance that

he can obtain another link is very low as long as a large number of existing agents maintain

their links. Hence, all agents after some large t will delete their link as soon as they realize

that their neighbor’s type is L, which corresponds to a separating equilibrium.

Proposition 4 With probability one, there exists t∗ such that for all t ≥ t∗ + 1, agent t

behaves just as if he were myopic and (i, j) 6∈ gt for i, j ≤ t∗ if vi = L or vj = L.

Proof. See the appendix.

The upshot is that players begin from the pooling phase and then eventually enter the

separating phase. For period t ≥ t∗ + 1, any agent i with d(i; gt) ≥ 2 is clearly of type H.

This implies that there is an equilibrium in which preferential attachment is not satisfied

when t ≥ t∗ + 1. This suggests that we can hardly expect the power law.

12In a pooling equilibrium, players choose the same action (postponing severing their links) regardless of
their private information (neighbor’s types), while a different type of player chooses a different action in a
separating equilibrium.
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8 Discussions and Simulations

Although we have succeeded in explaining strong preferential attachment in Section 6,13 the

resulting network, a star with only one hub, is far from realistic. In this section, we add a

more realistic ingredient.

Suppose that agents cannot observe the number of links of all their predecessors but only

k predecessors due to significant search costs. To be realistic, we consider myopic agents

who are not informed of the seniority of their predecessors, as assumed in Section 6. In any

period t, if entrant t observes his predecessor i with d(i) ≥ 2, he can be sure that i = H,

i.e., αt(i) = 1 if d(i) ≥ 2. If he observes a predecessor i with d(i) = 1, he may be either

the immediate predecessor or otherwise type H, so that αt(i) > α if d(i) = 1, since αt(i) is

a weighted average of α and 1. Also, we know that 0 < αt(i) < α if d(i) = 0. Therefore,

preferential attachment holds even in the case of limited observability due to search costs.

According to this reasoning, we will take the following simulation procedure. First, in

every period t, the entrant picks k nodes randomly. If t < k, he chooses all existing nodes.

Second, the entrant links to the node whose degree is maximal among the randomly selected

k nodes. If there are multiple nodes with the maximal degree, link any one of them randomly.

If all selected nodes have degree zero, link any node randomly.

Figure 1 illustrates resulting network structures when α = .5 and N = 500 when k =

2, 10, 100, 400 respectively. As we can correctly conjecture, resulting networks are almost

random networks when k is small and then hubs begin to emerge as k becomes larger, and

finally the star network emerge when k = 400. Figure 2 shows the degree distribution. In the

larger figure, only the vertical axis is log-scale, while both axes are log-scale in the smaller

inset. Interestingly, we can confirm that the degree distribution is smoothly transformed

from exponential functions into following the power law (except the tail part) as k gets

larger. Appearance of a small hump in the tail part when k = 100, 1000 is due to the fact

that the hubs generated in the initial phase (when t < k) grow faster than other nodes as

time goes.

An alternative approach to generate realistic network structures is to introduce bounded

rationality, i.e., the possibility that agents can make errors in calculations or choices. Here-

after, we will briefly discuss a rationale for “probabilistic preferential attachment” which can

be defined as “a node with more links is more likely to be connected with the new node.”

13In addition, we explained weak preferential attachment in Section 5 and long-run weak preferential
attachment in Section 7.
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For the purpose, we will utilize the concept of “Properness” coined by Myerson (1978) in

game theory.14 The properness requires agents to choose an alternative yielding a lower net

benefit with lower probability. It can be justified by the argument that an agent will be less

likely to make a more serious mistake since he will be more cautious. We will incorporate

“bounded rationality” defined based on properness into our model. For simplicity, we will

assume that agents can make non-optimal linking decision, but that they do not make a

mistake in a severing decision.15

Let rt be a behavioral strategy of entrant t,16 i.e., rt = (rt(i))i≤t−1 where rt(i) is the

probability that an entrant t chooses agent i as his linking partner and
∑

i∈t−1

rt(i) = 1. (1)

At t = 2, it is clear that r2(1) = 1 by equality (1). At t = 3, r3(1) = r3(2) = 1/2 by

Properness. Without loss of generality, assume that (2, 3) ∈ g3,1. If (1, 2) is deleted in the

second stage of t = 3, r4(1) < r4(2) = r4(3). If (1, 2) is preserved in the second stage of

t = 3, r4(2) > r4(1) = r4(3) since α4(2) > α4(1) = α4(3). More generally, suppose that

d(i) = 2 and d(j) = 1 for i, j < t. Then, rt(i) > rt(j) by Properness, since d(j) = 1 implies

that agent j (or his partner) was L type or he is the immediate senior. Now, suppose that

d(i) = 3 and d(j) = 2. If d(i) = d(j) = 2 in the immediately preceding network, it is clearly

off the equilibrium, since only one node can have more than one link in equilibrium, (because

the equilibrium network is a star). But, we cannot tell which is more likely to be H. If the

earlier phase was that d(i) = 3 and d(j) = 1 in the immediately preceding network, it is

highly likely to be an equilibrium. Thus, node i is more likely to be H. In turn, Properness

implies that rt(i) > rt(j). This argument can be extended to any i, j such that d(i) > d(j).

The point here is that an entrant links with higher probability to a node more likely to be H

which turns out to be equivalent to a node with more links. Although our approach closely

follows the spirit of Properness, it is distinguished from the proper equilibrium of Myerson

in the sense that we allow mistakes in equilibrium while Myerson allows mistakes only off

the equilibrium.

14This notion follows the spirit of “trembling hand perfectness” by Selten (1975) allowing some mistakes
of players.

15All that is needed in making a decision of severing a link with an agent is to know whether he is L or
H, while a linking decision requires much more information (probabilities that each senior is of H type).

16A behavioral strategy, which involves randomization over pure actions at an information set, is distin-
guished from a mixed strategy involving randomization over pure strategies. For a relation between the
behavioral strategy and the mixed strategy, see Kuhn (1953).
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Under the assumption of bounded rationality, we conduct simulations for our model.

Figure 3 is a simulation result that is repeated 1,000 times when α = .5 and N = 100, 000,

showing that the resulting degree distribution follows the power law P (d) ∼ d−γ with the

exponent γ ≈ 2.9. Figure 4 illustrates the resulting network structure when α = .5 and

N = 1, 000. A few hubs of H type emerge, leading to a hierarchical structure,while isolated

nodes are ones found to be L types. From simulations, it is also found that the oldest nodes

do not necessarily become hubs due to several reasons. The oldest ones may be L types or

they may not be chosen to be linked with new entrants. Figure 5 shows the index distribution

of hubs over 1,000,000 realizations of the model with N = 1, 000. In an extreme case, even

the 214-th entrant becomes a (local) hub as shown in Figure 5.

9 Concluding Remarks and Caveats

In this paper, we provided an economic explanation for preferential attachment, which is

usually assumed in the physics literature, in the context of social networks requiring mutual

consent of the linking partners. We argued that a newly born agent may prefer to form a

link with an agent with a high degree on the ground that the high degree may signal his high

value. Meanwhile, we also argued that if agents have perfect rationality in the sense that

they do not make mistakes, preferential attachment can be supported only weakly unless

uninformed agents are myopic.

If uninformed agents are myopic, preferential attachment is supported strongly in equi-

librium, but it does not imply the power law. Since preferential attachment is so strongly

supported then, only a star network is viable. We may consider generalizing our model of

binary value of vt to a continuum value. However, this will not lead to the power law. Since

existing agents i make their severance decision, depending only on whether vi ≥ c or vi < c,

the number of links of an agent only conveys information about whether his value exceeds

c or not, but no more than than. Consequently, for any di > dj > 2, there is no convincing

evidence for vi > vj. We may be able to infer that vi > vj if the linking cost of agent i and j,

ci and cj, are different, because if vi is large, agent j 6= i may want to link with him even if cj

is high, implying that a higher degree can be a signal of a higher value. Although this may be

an interesting extension, the resulting network will be still close to a star network, because

once a particular node obtains a relatively large number of links, new entrants will want

to link only with the node with probability one. This suggests that introducing bounded
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rationality similar to Properness seems indispensable to generating scale-free networks whose

link distributions follow the power law.

We look forward to the emergence of more realistic and sophisticated models explaining

social networks with bilateral links in the near future.

Appendix

Proof of Lemma 2: (i) Since player i has been once linked with some j, either vi = L or

vj = L if d(i; gt−1,2) = 0. Thus, αt(i) = α
1+α

< αt(t − 1) = α. (ii) If (i, j) ∈ gt−1,2 for some

j < t − 1, αt(i) = 1 > αt(t − 1) = α by Lemma 1. (iii) Let (i, j) ∈ gi,1. Clearly, j < i. If

(i, t − 1) ∈ gt−1,2 and d(i; gt−1,2) = 1, this implies that (i, j) has been deleted. This implies

that either vi = L or vj = L. Thus, αt(i) = α
1+α

< αt(t− 1) = α. ‖

Proof of Lemma 4: It is clear that g2,1 = g2,2 satisfies [UNC], since it is connected. Suppose

gt−1,2 satisfies [UNC]. From Lemma 2(i), it is clear that gt,1 also satisfies [UNC]. It only

remains to show that gt,2 satisfies [UNC]. Two possible cases are that either (i) (i, t) ∈ gt,1

for i 6= t− 1 or (ii) (t− 1, t) ∈ gt,1. In the case (i), suppose (t− 1, k) ∈ gt,1 for some k ∈ Nt−2

and deleting (t− 1, k) decomposes gt,1− (t− 1, k) into more than one nonempty component.

This means that d(t− 1; gt,1) ≥ 2, which is not possible. Consider the other case (ii). Since

gt−1,2 satisfies [UNC], d(t− 1; gt−1,2) = 1. Let the neighbor of player t− 1 be k ∈ Nt−1, i.e.,

(t− 1, k) ∈ gt−1,2. If d(k; gt−1,2) = 1, gt,2 − (t− 1, k) still satisfies [UNC]. If d(k; gt−1,2) ≥ 2,

it is a contradiction to (t, t− 1) ∈ gt,1 due to Lemma 2(ii). ‖

Proof Proposition 1: For any t, define

N0
t−1 = {i ∈ Nt−2 | d(i; gt−1,2) = 0},

N1
t−1 = {i ∈ Nt−2 | d(i; gt−1,2) = 1},

N2
t−1 = {i ∈ Nt−2 | d(i; gt−1,2) ≥ 2}.

Then, Nt−1 = {t− 1} ∪N0
t−1 ∪N1

t−1 ∪N2
t−1. Also, define

N1,0
t−1 = {i ∈ N1

t−1 | (i, j) ∈ gt−1,2 for j = t− 1},
N1,2

t−1 = {i ∈ N1
t−1 | (i, j) ∈ gt−1,2 for j 6= t− 1}.

From Lemma 2, it is clear that (i) t − 1 Ât i for i ∈ N0
t−1 ∪ N1,0

t−1 and (ii) i Ât t − 1 for

i ∈ N2
t−1 ∪N1,2

t−1 ≡ N̄t−1. If N̄t−1 6= ∅, it is optimal for player t to choose to link with player
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i ∈ N̄t−1. If N̄t−1 = ∅, it is optimal for him to choose to link with player t − 1. Thus, the

decision of agent t to choose to link with a player i ∈ N2
t−1 if N̄t−1 6= ∅ and to link with a

player t− 1 otherwise satisfies preferential attachment.‖

Proof of Lemma 5: Suppose vi = L. If i = t − 1, d(i; gt−1,2) = 1(< 2), so it must be that

i < t− 1. Then, the links of player i except the link with t− 1 would have been deleted at

latest by period t− 1. Thus, d(i; gt−1,2) could be at most one. Contradiction. ‖

Proof of Lemma 6: (i) It is clear, because αt(i) = αt(j) = 1 by Lemma 5. (ii) This is also

clear because αt(i) = 1 > αt(j). (iii) We have αt(j) = α
1+α

for j such that d(j; gt−1,2) = 0.

On the other hand, consider player i such that d(i; gt−1,2) = 0. Either i = t− 1 or i 6= t− 1.

If i = t − 1, Prob(vi = H) = α. If i 6= t − 1, Prob(vi = H | i 6= t − 1) = α
1+α

. Thus,

αt(i) = θα + (1− θ) α
1+α

for some θ ∈ (0, 1). Since α > α
1+α

, αt(i) > α
1+α

= αt(j). ‖

Proof of Proposition 3: (i) (=⇒) Under [A2], the myopic equilibrium is not viable, as argued

in the text, so this is clear. (⇐=) Note that δ
2
(M − c) is the maximum gain attainable by

postponing severing a link for one or more than one period, while c − L is the minimum

loss from postponing severing a link. (Postponing severance for more than one period incurs

c − L + δ(c − L) + · · ·.) Thus, if c − L > δ
2
(M − c), no other deviation will be profitable,

implying that the myopic equilibrium is sustainable. (ii) The proof is similar. ‖

Proof Proposition 4: Let x(t) be the number of H types in Nt, that is, x(t) =
∑t

i=1 xi where

xi = 1 if vi = H and xi = 0 if vi = L. Since E(xi) = α and Var(xi) = α(1 − α), we have

µ ≡ E(x(t)) = αt and σ2 ≡ Var(x(t)) = α(1− α)t.

Suppose that for some t∗ x(t∗) = n for some large n such that L − c + δM−c
n

< 0, or

equivalently, n > δM−c
c−L

. Then, for i, j ≤ t∗ − 1, link (i, j) with vi = L or vj = L will not

survive the second stage of period t∗. Knowing this, it is optimal for agent i (i ≥ t∗ + 1) to

choose the equilibrium strategy of a myopic agent.

It remains to show that with probability one, there exists t∗ such that x(t∗) = n, in other

words, that x(t) < n for all t with probability zero. By Chebyshev’s inequality, we have

P (|x(t)− µ| > kσ) ≤ 1/k2, for all k > 0. (2)

Let 1/k2 = ε, i.e., k = 1/
√

ε. Then, inequality (2) can be written as

P (|x(t)− µ| > σ/
√

ε) ≤ ε, ∀ε.
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Note that inequality (3) holds for any t. Thus, we have P (x(t) < µ − σ/
√

ε) < ε. Since

µ = αt and σ2 = α(1− α)t, we have

P (x(t) < x̄(t)) < ε,

where x̄(t) = αt −
√

α(1−α)t
ε

. Note that dx̄(t)/dt > 0 if t ≥ t1 for some large t1 and that

limt→∞ x̄(t) = ∞. Since limt→∞ x̄(t) = ∞, we can take t2 such that x̄(t2) ≡ αt2−
√

α(1−α)t2
ε

>

n. Take t̄ = max{t1, t2}. Then, P (x(t) < n) < P (x(t) < αt −
√

α(1−α)t
ε

) < ε for all t ≥ t̄.

This implies that there exists t∗ such that x(t∗) = n with probability one. ‖
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Sexual Contacts, Nature 411, 907-908 (2001)

[14] Myerson, R.: Refinements of the Nash Equilibrium Concepts, International Journal of

Game Theory 7, 73-80 (1978)

[15] Nelson, P.: Information and Consumer Behavior, Journal of Political Economy 78,

311-329 (1970)

[16] Page, F., Wooders, M. and Kamat, S.: Networks and Farsighted Stability, Journal of

Economic Theory 120, 257-269 (2005)

[17] Price, D.: Networks of Scientific Papers, Science 149, 510-515 (1965)

[18] Price, D.: A General Bibliometric and Other Cumulative Advantage Processes, Journal

of the American Society for Information Science 27, 292-306 (1976)

[19] Selten, R.: Reexamination of the Perfectness Concept for Equilibrium Points in Exten-

sive Games, International Journal of Game Theory 4, 25-55 (1975)

[20] Spence, M.: Job Market Signaling, Qarterly Journal of Economics 87, 355-374 (1973)

[21] Watts, A.: A Dynamic Model of Network Formation, Games and Economic Behavior

34, 331-341 (2001)

[22] Watts, A.: Non-Myopic Formation of Circle Networks, Economics Letters 74, 277-282

(2002)

18



Pajek

(a) (b)

(c) (d)
Pajek



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300  350  400  450

P
(k

)

k

K=2
K=10
K=30

K=100
K=1000



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

P
(k

)

k





 1

 10

 100

 1000

 10000

 100000

 0  50  100  150  200  250

fr
eq

ue
nc

y

index


