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Abstract.  Identifying zones and movement patterns of people is crucial to 

understanding adjacent regions and the relationship in urban areas. Most 

previous studies addressed zones or movement patterns separately without 

analysing simultaneously the two issues. In this paper, we propose an 

integrated approach to discover directly both zones and movement patterns 

among the zones, referred to as movement patterns between zones (MZPs), 

from historical boarding behaviours of passengers in subway networks by 

using an agglomerative clustering method. In addition, evaluation 

measures of MZPs are suggested in terms of coverage and accuracy. The 

effectiveness of the proposed approach is finally demonstrated through a 

real-world dataset obtained from smart cards on a subway network in 

Seoul, Korea. 
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1. Introduction 

Understanding geographically adjacent regions based on the movements of 

passengers is essential to facilitate various location-based activities such as residential 

area recommendation and urban planning (Antikainen, 2005; Yuan, Zheng and Xie, 

2012). Here, a set of such geographically adjacent stations is called a zone (Fusco and 

Caglioni, 2011). The notion of zone is reasonable since adjacent stations are often 
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significantly coherent with each other in terms of function due to their geographical 

proximities in most urban areas. In this research, a movement pattern between zones 

(MZP) is defined as a pair of zones, an origin and a destination, that are strongly related 

with each other in terms of people’s movements. MZPs are useful not only to articulate 

urban development strategies according to discovered zones, but also to improve 

passenger experiences in public transportation systems through re-scheduling resources 

and planning additional transportation methods. Moreover, based on the estimated flows 

of people between zones, it is possible to design the advanced advertisements that take 

transit flow into consideration (Blythe, 2004; Trépanier and Morency, 2010). By 

utilizing discovered MZPs, advertisers are provided with segmented customers with 

respect to movement behaviours, enabling more precisely targeted advertising.  

Due to the dynamic nature of people’s movements, it is challenging to identify 

zones and their relationships, which are continuously changing according to the daily 

experiences of people, compared to relatively stationary city development plans (Bagchi 

and White, 2005). However, with the recent advent of electronic-card payment systems 

(EPSs) which automatically charge a passenger with a transit fee by touching an 

electronic-chip-embedded card, called a smart card, movement behaviours of people on 

a transportation network such as subway and bus have become easier to record and 

investigate (Blythe, 2004). Since each smart card is associated to a unique identifier, an 

EPS is able to track the origin and the destination stations for each movement from the 

records such as stations, line, and transit time into an origin-destination (OD) database. 

Currently, EPSs are widely available in many modern transportation networks across 

the world such as UK, France, Finland, Italy, China, and Korea (Pelletier, Trépaniera 

and Morency, 2011).  

Many studies on the analysis of OD datasets have conducted to discover 

movement patterns among specific regions in urban areas (Bagchi and White, 2005; Joh 

et al., 2001; Lee and Mark, 2011; Lee and Park, 2005; Srinivasan and Ferreira, 2003) 

and to characterize the patterns of movement sequences (Chu and Chapleau, 2010; 

Hoffman et al., 2009; Ma et al., 2013). Particularly, some research mainly focused on 

analysing movements based on specific factors such as commutes (Bhat, 2001; Fusco 

and Caglioni, 2011; Konjar et al., 2010), travel time (Jang, 2010; Morency et al., 2006; 

Zhao et al., 2013), individual behaviours (Liu et al., 2009), and trajectories 

(Ghasemzadeh et al., 2014).  Most of them assume the predefined regional partitions to 

understand the people’s movement trends that mainly represent from and to which 
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places people usually move. Some of the authors develop pattern discovery algorithms 

and suggest measures for quantifying the effectiveness of movement patterns.  

In the meantime, there are some methods for predicting the amount of people’s 

movements between points of regions (Chu and Chapleau, 2008; Park et al., 2008; 

Munizaga et al., 2010; Munizaga and Palma, 2012). They have estimated the future 

movements of people between regions based on the past observations between the 

regions. Furthermore, a few movement estimation approaches have been suggested to 

enhance resource scheduling (Bagchi and White, 2004; Trépanier et al., 2009). Along 

with the research focused on movement patterns of people, a few methods for 

identifying zones have been also proposed (Fusco and Caglioni, 2011; Karlsson, 2007; 

Konjar et al., 2010; Martin, 2003; Moreno-Regidor et al., 2012). By applying clustering 

analysis, they have focused on discovering coherent functional regions based on 

movement behaviours of people.  

Although the previous research successfully identified either zones or movement 

patterns, they still have limitations to directly capture MZPs from movement 

observations. They concentrate on addressing zone identification while other studies 

mainly focus on unveiling movement patterns of people. To obtain MZPs through the 

previous approaches, combining multiple existing methods is required, which is 

difficult due to their heterogeneity. Moreover, such combined models cannot guarantee 

satisfactory results by taking into account the balance between zone identification and 

movement pattern discovery. 

 

 

Figure 1. Comparison of movement pattern and zone identification approaches. 
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Figure 1 illustrates the comparison of our proposed approach to the existing ones. 

For a given OD dataset shown in Figure 1 (a), it is assumed that there exist possible 

zones such as {        }, {         }, {     }, and {           }, where the first zone is 

closely related to the third zone whereas the second zone is related to the last zone. 

Figure 2 (b) shows that an approach that only focuses on movement patterns between 

points of regions is restricted to identify movement patterns such as (     ) , 

(      ), (      ), and (      ) without suggesting zones. On the other hand, 

Figure 2 (c) represents an approach that is mainly modelled to identify zones fails to 

discover the hidden relations between zones. On the contrary, the MZP identification 

approach is capable to directly unveil both zones and the relations among them, as 

shown in Figure 1 (d). 

In this research, we develop an integrated approach to identifying MZPs from 

historical movement behaviours of people on subway networks. The objective of our 

approach is to simultaneously discover zones by combining adjacent regions and hidden 

movement patterns between zones. Through addressing the issue , the proposed 

approach is designed to yield well-balanced results in zoning and patterning movements. 

Therefore, the approach is beneficial in resolving transportation and urban development 

issues that often require considering not only zone discovery but also the movement 

patterns between zones, at the same time. 

Specifically, an MZP identification algorithm is developed, which iteratively 

identifies MZPs from individual observations for a given OD dataset without predefined 

zone partitions. At each iteration step, the proposed algorithm attempts to search for a 

better MZP by combining two MZPs into a single one based on their adjacent proximity. 

Identified MZPs are then evaluated by using two measures, coverage and accuracy, 

which are taking into account the number of movements and the dependency between 

zones, respectively. As a new MZP is identified by combining two existing ones, the 

MZP becomes stronger in terms of coverage compared to the existing ones, while it is 

likely to become less strong in terms of accuracy due to the increments of its zone 

length. Therefore, to consider the trade-off caused by MZP merging, the effectiveness 

of MZPs are finally evaluated in terms of both coverage and accuracy by introducing a 

combined measure after enumerating possible MZPs from an OD dataset. 

By using the proposed algorithm, MZP identification tasks according to iteration 

steps are visually presented, and top ranked MZPs are analysed based on a real-world 
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OD dataset obtained from a subway network in Seoul, Korea. Moreover, the 

distributions of MZPs according to coverage and accuracy are suggested, showing that 

only a few highly effective MZPs exist while the majority of MZPs are negligible to 

explain the entire dataset. In addition, by examining identified MZPs with respect to 

commuting behaviours of people, we found some MZPs that were more suitable to 

address a particular type of commuting behaviours while the others yielded quite low 

performances regardless of commuting behaviours. 

This paper is organized into the following sections. First, the proposed approach 

to MZP analysis is developed in Section 2. In Section 3, we suggest three evaluation 

measures to quantify the effectiveness of MZPs with respect to coverage and accuracy. 

In Section 4, the experimental results obtained by the proposed approach are 

demonstrated using a real-world OD dataset from a subway network. Finally, we 

discuss relevant findings in Section 5 and complete the analysis. 

2. Movement pattern analysis 

2.1. OD dataset 

The attributes of an OD dataset differ according to EPSs caused by different 

aspects of operation, maintenance, and management policies. There originally existed 

24 distinct attributes in the OD dataset used for this research such as smart card 

identifiers, associated stations, transit times, lines, passenger types, train identifiers, and 

transfer information. Among them, only four attributes, origin station, destination 

station, time, and line. The attributes are directly related with from where, to where, and 

when a person moves, as shown in Table 1. The other attributes do not necessarily 

depend on people’s movements in a subway network. In this research, it is assumed that 

each movement is associated to both its origin and destination stations. The origin and 

destination information can be often obtained in EPSs especially in subway networks 

since the EPSs calculate transit fees of passengers based on their movement distances. 
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Table 1. OD record attributes used in this research. 

No Field Description Data type 

1 Origin station Station number (from where) Numeric 

2 Destination station Station number (to where) Numeric 

3 Time Time to ride at origin station (when) Date time 

4 Lines of origin and  

destination stations 

Subway lines on which origin and 

destination stations exist 

String 

 

2.2. Research framework 

The proposed approach is divided into two major phases, data acquisition and 

filtering and MZP identification. Figure 2 illustrates the details of involved tasks and 

information flows with examples of OD records and identified MZPs. When passengers 

touch their smart cards on card readers to pay their fees, their information containing 

origin and destination stations are recorded in an OD database. In the data acquisition 

and filtering phase, such OD records are retrieved for the experiments. In addition, to 

analyse MZPs according to movement time, multiple filtered OD datasets are 

constructed according to time slots. The OD datasets are used for the input of the 

proposed MZP identification algorithm. 

 

Figure 2. Overall research framework. 
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In the MZP identification phase, MZPs are identified from an OD dataset by 

utilizing the proposed algorithm. Based on the observed movements in the dataset, the 

proposed algorithm attempts to search for better MZPs through iteratively combining 

OD records. Since the adjacency between stations and the directions of observed 

movements are investigated, the outputs of the algorithm are guaranteed to be MZPs 

without further manipulations. The details of the proposed algorithm are presented in 

Section 2.3. All of the identified MZPs from the OD dataset are then evaluated, which is 

described in Section 3. Because this study mainly addresses on how MZPs are 

effectively identified and reasonably evaluated, we focus on the second part of the 

research framework throughout the remainder of this article. 

2.3. Discovery of movement pattern between zones (MZP) 

The proposed MZP discovery approach finds hidden MZPs through iteratively 

merging MZPs given a set of stations, S, and a set of observed movements, V. Figure 3 

shows how MZPs are iteratively merged for given 12 observed distinct movements, 

denoted as         , and 7 stations, denoted as        . In the figure, two stations 

with subsequent indexes are assumed to be adjacent. The origin and destination stations 

of initial MZPs are shown in Figure 3 (a). Suppose that a pair of MZPs, (     ), which 

yields the most frequent movements on the average, is selected to be merged into a 

single MZP, denoted as   , as depicted in Figure 3 (b). Subsequently, three MZPs,   , 

  , and   , are identified by merging each pairs of MZPs, (     ), (     ), and 

(       ) through three iterations, as shown in Figure 3 (c). Finally, four MZPs,    , 

   ,   , and    , are identified after four more iterations, as presented in Figure 3 (d).  

The underlying rationale of this approach is based on the agglomerative 

clustering analysis that iteratively combines two similar instances in a hierarchical 

manner. However, the proposed approach differs from the conventional agglomerative 

clustering method. Our approach conducts MZP merges that preserve the direction of 

each movement and the adjacency of stations in a zone rather than simply combining 

the nearest two observations. Moreover, while the conventional method is used for 

partitioning entire observations into subsets based only on their similarities, our 

approach aims to allow practitioners to identify several significant MZPs for better 

understanding of representative movements between zones. 
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Figure 3. MZP examples iteratively identified from observed movements. 

 

In this research, given a set of N stations,   {       }, a set of M observed 

movements is denoted as   {        } , where the m-th observed movement, 

        , is represented by a directional relation from an origin station,     , to 

a destination station,     . The i-th discovered MZP,         , represents the 

movement pattern from its origin zone,   , to its destination zone,   , where    and    

are sets of adjacent stations in  . Moreover, it is said that movement          is 

covered by MZP         , if       and      . If all the movements covered 

by MZP    can be covered by MZP   , we can say that    is a subset of   . And, two 

MZPs,          and         , are defined to be adjacent if there exist two 

pairs of stations, (             ) and (             ), such that  (       )  

  and  (       )   , where  (     )  represents the distance between stations. The 

distance between stations is simplified to be one in this research since the geographical 
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distances between two adjacent stations in urban areas are generally similar to each 

other in a subway network. For instance, in the subway network considered in this 

research, the distances of 83% of adjacent stations range from 0.6 to 1.2 kilometres. In 

addition, the adjacencies between stations on different lines are considered, as well as 

those between stations on the same line, to be able to identify MZPs across different 

lines.  

Based on the notations defined above, we define the average frequency measure 

of an MZP in an OD dataset to evaluate how many OD records in the dataset are 

covered by the MZP. Here, the average frequency of MZP          represents the 

average number of observed movements from a station in    to a station in   . The 

average frequency of MZP    in an OD dataset is defined as: 

    (  )  
    (     )

|  |  |  |
 

(1) 

where     (     )  represents the total number of observed movements from  

stations in    to stations in   , and | | is the size of the given set. 

Then, the definition of the average frequency of an MZP is extended into the 

joint average frequency of two MZPs in order to process the merge of two MZPs. The 

joint average frequency of two MZPs,          and         , is the average 

number of observed movements from one of their combined origin stations,      , to 

one of their combined destination stations,      . In the proposed algorithm, we 

assume that the joint average frequency can be achieved only if two MZPs are adjacent 

(i.e. can be merged). The joint average frequency of two MZPs,    and   , is defined as:  

      (     )

 {

    (           )

|     |  |     |
                          

           

 

(2) 

By utilizing Equation (2), the joint average frequency matrix that presents the 

joint average frequency values for all the pairs of MZPs is constructed or updated at 

each iteration step of MZP identification tasks. We note that           by definition. 

For given T initial MZPs, where T is the number of distinct observed movements in a 

given OD dataset, the sets of MZPs at iterations,      , are respectively denoted as 

 ( )  {       }    
( )  {        }, where K is the number of iterations and    
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represents the number of the remaining MZPs at the K-th iteration. In details,      

    ∑  (  )   
    , where  (  ) is a function that returns the number of MZPs which 

are a subset of the best merged MZP at the   -th iteration. Therefore, the joint average 

frequency matrices for respective iterations,  ( )    ( ), are organized as: 

 ( )  (

    
( )
     

( )

   

    
( )
     

( )
)     ( )  (

    
( )
      

( )

   

     
( )

       
( )
)  

(3) 

The MZP identification algorithm is presented to search for the best current 

merge of two MZPs at each iteration on the basis of the joint average frequencies      

and their matrix  , as shown in Figure 4. The algorithm sets each station as a zone at the 

initial iteration (line 2 in the figure), and it builds T MZPs by regarding each distinct 

observed movement as an MZP for the next iteration (line 3). Moreover, based on the 

initial MZPs, the initial joint average frequency matrix,  ( ) , is calculated using 

Equations (2) and (3) (line 4). At the k-th iteration, the algorithm finds the maximum 

value in  ( ), denoted as   ( )     (    
( )
)                 (   ), and merges the 

two MZPs associated to   ( ) (line 6). At that time, if there are other MZPs which are 

subsets of the new merged MZP, then all the subset MZPs are also merged to new one 

(line 7). The number of the subsets is  (  ) . At each iteration, the algorithm also 

updates the joint average frequency matrix for the next step (line 8). MZP merges are 

repeatedly processed until there are no remaining MZP to merge or the maximum value 

in the joint average frequency matrix is less than threshold   (line 9), and the remaining 

MZPs are finally returned (line 10).  

 

1: Initialize 

2:      Set each station in S as a zone. 

3:      Build T MZPs for the distinct observed movement in V. 

4:      Calculate the joint average frequency matrix  ( )  based on     
( )

 for          .  

5: Repeat 

6:     Merge two MZPs,  𝑢 and  𝑣, s.t.  𝑢 𝑣
( )
   ( )     (    

( ))                (   ). 

7:     If any other MZP is a subset of the new merged MZP, then also merge it to the new one. 

8:     Update the joint average frequency matrix  ( ). 
9: Until There is no MZP to merge or   ( ) is less than threshold  . 

10: Return The remaining MZPs. 
 

Figure 4. MZP identification algorithm. 
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The proposed algorithm guarantees that further iterations are meaningless in 

terms of average frequency since the largest value in the joint average frequency matrix 

is decreasing as iterations are performed. Briefly, the joint average frequency of any two 

MZPs, shown in Equation (2), is not increased after merging due to     
( )
 

   (    
( )     

( ))                . This means that, when the algorithm stops, it 

yields MZPs associated to higher values of joint average frequencies compared to ones 

that have not yet been identified. 

The proposed algorithm can result in a significantly reduced computational cost 

and time compared to the exhaustive approaches that enumerate all possible MZPs to 

search for optimal MZPs especially when dealing with the subway networks which 

consist of a large number of stations. In the initial step, for the given T initial MZPs, 

which is the distinct observed movements in an OD dataset, the computational 

complexity of the proposed algorithm is O(T
2
) in constructing the joint average 

frequency matrix of T by T dimensions. During the remaining MZP discovery steps, on 

the other hand, the complexity becomes O(T) in the worst cases since equal or more 

than one MZP is removed at each iteration step of MZP merges. 

3. MZP evaluation 

We suggest three measures to quantify the effectiveness of an MZP in terms of 

coverage and accuracy. The measures are extended from the previously developed 

guidelines for evaluating rules that represent the relation between two sets of features 

(He et al., 2012). Particularly, we adopt support, lift, and cosine metrics, which aim to 

evaluate a rule in terms of the number of covered instances by the rule, the correlation 

between sets of features in the rule, and the similarity between sets of features in the 

rule, respectively. Since each MZP can be regarded as a rule that explains the directed 

movements of people between zones, such metrics are suitable for evaluating MZPs in 

our context. Unlike the existing measures that assume simultaneous observations across 

all stations in a zone, we modified them to fit our specific problem through taking into 

account movements between stations each of which is in its origin or destination zones.  

First, we measure the coverage of an MZP based on the frequency of the 

observed movements covered by the MZP. The coverage of MZP    for an OD dataset, 

called v-value, is defined as: 
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 (  )    (     )  
    (     )

 
 (4) 

where   (     ) is the probability that a movement from an origin station in    to a 

destination station in    is observed in an OD dataset,     (     ) represents the 

number of movements covered by          in the dataset, and M is the number of 

all the observed movements in the dataset.  

Second, we calculate the accuracy of an MZP by examining the dependency 

between its origin and destination zones. While the coverage of an MZP is calculated 

based on how many movements are conformant to the MZP, the accuracy of an MZP 

focuses on how much dependent its origin zone is on its corresponding destination zone. 

For instance, an MZP is valuable if people who ride on one of the stations in its origin 

zone frequently alight on one of the stations in its destination zone although its observed 

movement frequency is not very high. The accuracy of MZP    for an OD dataset, 

called a-value, is calculated as: 

 (  )  
  (      |      )

  (     )
 
  (      |      )

  (     )
 

 
  (     )

  (     )   (     )
 

      (     )

    (     )     (     )
 

(5) 

where   (      ) and   (     ) are the probabilities that the destination station 

of an observed movement in an OD dataset belongs to    and the origin station of an 

observed movement belongs to   , respectively,   (      |      ) represents the 

probability that the destination station of an observed movement in an OD dataset 

belongs to   , given that its origin station belongs to   , and   (      |      ) is 

the probability that the origin station of an observed movement in an OD dataset 

belongs to   , given that its destination station belongs to   . 

In Equation (5), for an OD dataset,  (  )  such that          becomes 

higher than one if its two zones,    and   , are positively correlated while it gets closer 

to zero if the two zones are negatively correlated. In case that the origin and the 

destination zones are uncorrelated,   (  ) has near one since   (      |      )  

   (     ) and   (      |      )     (     ). Therefore, as more people 
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who ride on one of the stations in    alight on one of the stations in   , and vice versa, 

the accuracy value of MZP    becomes higher. 

Finally, we additionally propose a measure that considers the trade-off between 

coverage and accuracy. Specifically, as MZPs are merged, the coverage of an MZP 

increases while its accuracy is likely to decrease. It is because the coverage measures 

MZP based on the number of movements covered by the MZP while the accuracy 

considers the dependency between two specific zones of the MZP. The trade-off can be 

ascertained when we consider MZPs consisting of a single specific zone closely related 

to other multiple zones. In such MZPs, it is highly possible that their v-values become 

quite high whereas their a-values become low (Tan et al., 2004). Therefore, through 

combining coverage and accuracy described in Equations (4) and (5), respectively, the 

combined measure for MZP         , called c-value, given an OD dataset, is 

defined as: 

 (  )  √ (  ) (  )  √
    (     )

 

      (     )

    (     )     (     )

 
    (     )

√    (     )     (     )
 

(6) 

4. Experiment results 

4.1. Dataset description 

We collected an OD dataset for five consecutive days, from 18 Jun, 2012 

(Monday) to 22 Jun, 2012 (Friday), from an EPS for a subway network in Seoul, Korea. 

The subway network was associated with 148 stations across four lines, Violet (V), 

Brown (B), Olive (O), and Pink (P), and the numbers of stations on each line were 51, 

38, 42, and 17, respectively (See Table 3 in Appendix for the details of stations). 

5,405,736  movements were obtained to be the OD dataset for the experiments, and the 

time slots in a day, ranged from 5:00 to 24:00. The proportions of the observed 

movements in lines V, B, O, and P were 35%, 17%, 38%, and 10%, respectively. For 

the purpose of noise reduction, we removed observed movements associated with a pair 

of an origin and a destination stations if the number of observed movements between 

the stations was less than a given value, called minimum movement value, which was 
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one hundred in the experiments. Finally, 4,763,823 observed movements were used in 

our experiments, which were visualized on a map of Seoul, as shown in Figure 5. 

We note that, as the minimum movement value becomes larger, the distances 

between zones in discovered MZPs tend to be closer, while the smaller minimum 

movement value is likely to yield the larger distances between zones in the discovered 

MZPs. It is because the larger minimum movement values imply removing more 

movements associated with distant zones rather than close zones. We empirically found 

that minimum movement values ranging from 50 to 200 were suitable to uncover the 

overall movement patterns in the dataset we considered, and there was no significant 

difference according to the minimum movement values in the considered range. 

However, in order to adjust the minimum movement value in a more effective way, 

further methods to sophisticatedly estimate the appropriate values according to a given 

dataset. 

 

 

Figure 5. Visualization of the OD dataset. 
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Figure 6 depicts the overall distributions of the collected dataset in terms of 

movement distances and time slots, implying that people tend to move a short distance 

and people’s movements are intensively performed at some specific time slots. In 

details, Figure 6 (a) shows that about half of the observed movements passed less than 9 

stations, and only 1% of the observed movements passed more than 38 stations. The 

most frequently observed movement distance was 3 with a proportion of 7.304%, and 

the largest movement distance was 61 with a frequency of 1. The mean and the variance 

of the movement distances were 10.037 and 63.858, respectively, and their median 

value was 8.  

Figure 6 (b) illustrates the ratios of observed movements according to time slots. 

A time slot is regarded as rush hours if the appearance ratio of movements observed at 

the time slot larger than the average appearance ratio of movements at a time slot across 

the entire time slots considered, while the rest of time slots are considered idle hours. 

Since the average appearance ratio of observed movements at a time slot was 0.05 in 

our dataset, and 7:00 to 10:00 and 17:00 to 20:00, were founded as rush hours. The 

number of observed movements in the rush hours was 2,130,278, with a portion of 

44.718%, indicating, on the average, 8.944% of the entire movements were observed in 

a single time slot in the rush hours. 

 

 

Figure 6. Observed movement distributions. 
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4.2. MZP identification 

In this section, we present how MZPs are identified by merging MZPs from an 

OD dataset based on the proposed algorithm. Figure 7 illustrates the changes of the 

identified MZPs during the iteration steps of the proposed algorithm. Specifically, four 

graphs (a) to (d) in Figure 7 show the identified MZPs when the numbers of iteration 

steps were 0 (initial), 70, 140, and 193 (final), respectively. In each graph, the 

horizontal and the vertical axes are the origin and the destination stations, respectively. 

Since the total number of stations across the four lines was 148, each graph contains 

21,904 cells each of which is associated to an origin and a destination stations. And, the 

colour of a cell shows the number of observed movements from its associated origin 

and destination stations. An MZP is shown as a rectangle because each MZP is 

represented as a set of horizontally and vertically adjacent cells. 

As shown in Figure 7, through conducting MZP merges, the number of 

remaining MZPs was decreased while better MZPs in terms of coverage were obtained. 

The respective numbers of the remaining MZPs for the iteration steps, depicted in 

Figures 7 (a) to (d), were 2,391, 2,159, 1,911, and 1,745, respectively. On the other 

hand, at each iteration step, the best MZPs in terms of coverage were able to explain 

12,540, 57,102, 71,262, and 73,926 observations, respectively. After finalizing iteration 

steps, most significant MZPs were discovered on the V-line or the O-line, as shown in 

Figure 7 (d). Since more observed movements on a line imply more opportunities to 

produce better MZPs in terms of coverage, the significantly large number of movements 

observed on the two lines compared to others might be contributed to yield such results. 

The best MZP in terms of coverage was {O39, O40, O41, O42}   {O31, O32, O33, 

O34, O35, O36, O37, O38}, shown in a box in Figure (d), whose coverage value was 

1.552%. 

 



To appear in International Journal of Geographical Information Science.  

 

 

Figure 7. MZPs identified with the proposed algorithm according to iteration steps. 

 

The MZPs identified from the collected OD dataset were then evaluated by 

using the three proposed measures, v-value, a-value, and c-value, and the top 10 MZPs 

in terms of c-value are presented in order in Table 2, and the results are visualized on a 

map of Seoul, shown in Figure 8. 

 The top 10 MZPs were able to cover 8.839% among the entire observed 

movements. The best MZP in terms of c-value, p1, was capable to cover 1.552% of the 

entire observed movements, and its accuracy was 5.659. Even though its accuracy was 

lesser than those of some top ranked MZPs, it turned out that the MZP outperformed the 

others when both coverage and accuracy were considered. Interestingly, MZPs, p8 and 

p9, whose respective ranks in terms of coverage were 304 and 317 (their v-values were 

only 0.402 and 0.388, respectively), were finally ranked at the 8-th and 9-th positions 
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attributed to their high a-values, implying that the consideration of the trade-off 

between the amount of movements and the dependency between zones (i.e. coverage 

and accuracy) can be helpful to unveil serendipitous MZPs. 

Additionally, we found some pairs of MZPs each of whose origin and 

destination zones were in opposite directions such as (p3, p4) and (p8, p9) in Table 2. For 

instance, the origin zone of p3 is the same as the destination zone of p4, and the 

destination zone of p3 is same as the origin zone of p4. These results might be yielded by 

the movement patterns which are mainly caused by commuting behaviours of people 

between zones. Moreover, there were pairs of MZPs such as (p3, p7) and (p4, p6) that 

share either origin or destination zones with each other. In particular, a zone that 

contains V6, V7, V8, and V9 was performing as an origin zone of different MZPs, p3 

and p7, while the zone was also acting as a destination zone for different MZPs, p4 and 

p6, at the same time. 

 

Table 2. Top 10 MZPs in terms of the combined measure (c-value). 

MZP Origin zone Destination zone 
# of 

covered 

movements 

Measures 

v-value 

(%) 
a-value c-value 

p1 O39, O40, O41, O42 
O31, O32, O33, O34, O35, O36, O37, 

O38 
73,926 1.552 5.659 0.296 

p2 
O32, O33, O34, O35, O36, O37, 

O38 
O39, O40, O41, O42 60,996 1.280 6.122 0.280 

p3 V6, V7, V8, V9 V1, V2, V3, V4 37,824 0.794 7.193 0.239 

p4 V1, V2, V3, V4 V6, V7, V8, V9 37,252 0.782 7.261 0.238 

p5 P1, P2, P3, P4 P5, P6, P7, P8 27,634 0.580 7.934 0.215 

p6 V10, V11, V12, V13, V14 V6, V7, V8, V9 44,755 0.939 4.847 0.213 

p7 V6, V7, V8, V9 V10, V11, V12 37,391 0.785 4.873 0.196 

p8 B11, B12, B13 B15, B16, B17 19,172 0.402 8.626 0.186 

p9 B15, B16, B17 B11, B12, B13 18,477 0.388 8.803 0.185 

p10 O9, O10, O11, O12, O13, O14, O15 O21, O22, O23, O24 63,629 1.336 2.469 0.182 

sum - - 421,056 8.839 - - 
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Figure 8. Visualization of the identified top MZPs. 

4.3. MZP distributions 

Figure 9 depicts the distribution of the distances between zones in the 1,745 

discovered MZPs. The distances between zones in the discovered MZPs ranged from 1 

to 49. The graph shows that more than half of the distances between zones associated to 

an MZP were less than 8 and the most frequently observed distance was 2. There hardly 

existed MZPs in which the distance between zones were larger than 20. This implies 

that closer zones are more likely to be related with each other. Here, the distance of an 

MZP was calculated as the average distance between stations in the origin zone and 

stations in the destination zone.  
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Figure 9. Distribution of the distances between zones. 

 

Figure 10. Distributions of the identified MZPs with respect to the suggested measures. 

 

Figure 10 shows the distributions of the identified MZPs with respect to three 

suggested measures, indicating that only a small number of identified MZPs were 

significant. First, the v-values and the cumulative proportion for the MZPs are presented 
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in Figure 10 (a). The top 5% of the identified MZPs in terms of coverage, which 

included 87 MZPs, covered 32.566% of the entire observed movements while the top 10% 

of MZPs covered 38.059%. Next, Figure 10 (b) depicts the distribution of the a-values 

for the identified MZPs. Similar to coverage, the a-values for the top 5% MZPs were 

much higher compared to those of the others. The accuracy values for the 5-th and the 

10-th percentiles of the identified MZPs were 10.394 and 8.348, respectively. Finally, 

Figure 10 (c) presents the distribution of the identified MZPs in terms of the combined 

measure. The c-values for the 5-th and the 10-th percentiles of the discovered MZPs 

were 0.077 and 0.068, respectively. 

4.4. Commuting pattern analysis 

We further investigated the top 10 MZPs, presented in Table 2, in terms of 

commuting behaviours of people. We assumed that the morning and the evening 

commutes can be captured mainly in the two rush hours that were mentioned in Section 

4.1. That is, time windows of 7:00 to 10:00 and 17:00 to 20:00 were considered the 

morning and the evening commutes, respectively.  

Figure 11 shows the comparison results between morning and evening 

commutes  of the top 10 MZPs for three measures, v-value, a-value and c-value. Some 

MZPs such as p10 and p1 outstand in morning commute, compared to evening commute. 

For instance, MZPs p10 and p1 have much higher coverages (i.e. v-values) of morning 

commute than those of evening commute, as shown in Figure 11 (a), although both 

accuracies in their morning and their evening commutes were almost the same, as 

shown in Figure 11 (b).  

On the other hand, some other MZPs were more suitable to address movements 

for evening commute than morning commute. MZPs p2, p6 and p4 have  much higher 

coverages of evening commute than those of morning commute, as shown in Figure 11 

(a), although their accuracies in the morning a little higher than those in the evening 

commute. For the rest of MZPs, there was no significant tendency according to 

commuting behaviours, implying that they were playing for both morning and evening 

commutes.  

Interestingly, the accuracy values of all the identified top MZPs for morning 

commute were higher than those for evening commute. This indicates that the 

commuting behaviours of people in the morning are more patternized compared to those 

in the evening. 
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Figure 11. Comparison of the discovered top MZPs according to morning and evening 

commuting behaviours. 

5. Discussion and conclusions 

In this research, we suggest a data driven approach to identify movement 

patterns of people between zones, called MZPs, based on boarding behaviours of people 

in subway networks. Specifically, our approach attempts to simultaneously identify 

zones and movement patterns between zones from an OD dataset unlike the previous 

approaches that separately investigate the two issues. We adopted the proposed 

approach in a real-world OD dataset obtained from an EPS in a subway network in 

Seoul, Korea. Throughout the experiments, our approach showed satisfactory results in 

identifying strong MZPs for supporting practitioners to better understand the existence 

of zones and the relations between them.  
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Our approach included both identification and measurement of movement 

patterns based on generic information such as origins, destinations, and adjacent stations. 

It is believed that the proposed method can also be applied in other types of 

transportation networks such as bus and taxi. Moreover, discovered MZPs are able to 

facilitate more precise transportation planning and route reorganization by capturing the 

actual dependencies among regions in terms of people’s movements. For instance, non-

stop bus routes and other alternative transportation means between zones associated 

with a MZP can be developed. We also plan to conduct research on more precise 

evaluation of MZPs by additionally considering demographic features. 
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Appendix A. 

See Table 3. 

Table 3. Full names of stations according to lines (Sym refers to symbol). 

(a) V-line       

Sym Full name Sym Full name Sym Full name Sym Full name Sym Full name 

V1 Banghwa V2 Gaehwasan V3 Gimpo Itn’l Airp. V4 Songjeong V5 Magok 

V6 Balsan V7 Ujangsan V8 Hwagok V9 Kkachisan V10 Sinjeong 

V11 Mok-dong V12 Omokgyo V13 Yangpyeong V14 Y.D.P.-gu Office V15 Y.D.P. Market 

V16 Singil V17 Yeouido V18 Yeouinaru V19 Mapo V20 Gongdeok 

V21 Aeogae V22 Chungjeongno V23 Seodaemun V24 Gwanghwamun V25 Jongno 3-ga 

V26 Euljiro 4-ga V27 D.D.M. H. 

Park 

V28 Cheonggu V29 Singeumho V30 Haengdang 

V31 Wangsimni V32 Majang V33 Dapsimni V34 Janghanpyeong V35 Gunja 

V36 Achasan V37 Gwangnaru V38 Cheonho V39 Gangdong V40 Gil-dong 

V41 Gubeundari V42 Myeongil V43 Godeok V44 Sangil-dong V45 Dunchon-dong 

V46 Olympic 

Park 

V47 Bangi V48 Ogeum V49 Gaerong V50 Geoyeo 

V51 Macheon         

          

(b) B-line        

Sym Full name Sym Full name Sym Full name Sym Full name Sym Full name 

B1 Eungam B2 Yeokchon B3 Bulgwang B4 Dokbawi B5 Yeonsinnae 

B6 Gusan B7 Saejeol B8 Jeungsan B9 Digital Media City B10 WorldCupStadium 

B11 
Mapo-gu 
Office 

B12 
Mangwon 

B13 
Hapjeong 

B14 
Sangsu 

B15 
Gwangheungchang 

B16 Daeheung B17 Gongdeok B18 Hyochang Park B19 Samgakji B20 Noksapyeong 

B21 Itaewon B22 Hangangjin B23 Beotigogae B24 Yaksu B25 Cheonggu 

B26 Sindang B27 Dongmyo B28 Changsin B29 Bomun B30 Anam 

B31 
Korea 

Univ. 
B32 

Wolgok 
B33 

Sangwolgok 
B34 

Dolgoji 
B35 

Seokgye 

B36 Taereung B37 Hwarangdae B38 Bonghwasan     

          

(c) O-line         

Sym Full name Sym Full name Sym Full name Sym Full name Sym Full name 

O1 Jangam O2 Dobongsan O3 Suraksan O4 Madeul O5 Nowon 

O6 Junggye O7 Hagye O8 Gongneung O9 Taereung O10 Meokgol 

O11 Junghwa O12 Sangbong O13 Myeonmok O14 Sagajeong O15 Yongmasan 

O16 Junggok O17 Gunja O18 Ch.Grand Park O19 Konkuk Univ. O20 Ttukseom Resort 

O21 Cheongdam O22 G.N.-gu Office O23 Hak-dong O24 Nonhyeon O25 Banpo 

O26 Express Bus 

Term. 
O27 Naebang O28 Isu O29 Namseong O30 Soongsil Univ. 

O31 Sangdo O32 Jangseungbaegi O33 Sindaebangsamgeori O34 Boramae O35 Sinpung 

O36 Daerim O37 Namguro O38 Gasan Dig. Comp. O39 Cheolsan O40 Gwangmyeongsageori 

O41 Cheonwang         

          

(d) P-line         

Sym Full name Sym Full name Sym Full name Sym Full name Sym Full name 

P1 Amsa P2 Cheonho P3 Gangdong-gu Office P4 Mongchontoseong P5 Jamsil 

P6 Seokchon P7 Songpa P8 Garak Market P9 Munjeong P10 Jangji 

P11 Bokjeong P12 Sanseong P13 Namhansanseong P14 Dandaeogeori P15 Sinheung 

P16 Sujin P17 Moran       

 


