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Abstract 

Cloud computing provides infrastructure, platform and software as services to customers. For the purpose of 

providing reliable and truthful service, a fair and elastic resource allocation strategy is essential from the 

standpoint of service customers. In this paper, we propose a game-theoretic mechanism for dynamic cloud 

service management, including task assignment and resource allocation to provide reliable and truthful cloud 

services. A user utility function is first devised considering the dynamic characteristics of cloud computing. 

The elementary stepwise system is then applied to efficiently assign tasks to cloud servers. A resource 

allocation mechanism based on bargaining game solution is also adopted for fair resource allocation in terms 

of quality of service of requested tasks. Through numerical experiments, it is shown that the proposed 

mechanism guarantees better system performance than several existing methods. The experimental results 

show that the mechanism completes the requested tasks earlier with relatively higher utility while providing 

a significant level of fairness compared to existing ones. The proposed mechanism is expected to support 

cloud service providers in elastically managing their limited resources in a cloud computing environment in 

terms of quality of service. 
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1. Introduction 

1.1 Research background 

Gartner recently identified cloud computing as one of the top strategic technologies for the next ten years [1]. 

Cloud computing is designed to power the next-generation data centers as the enabling platform for dynamic 

and flexible application provisioning. This is facilitated by exposing data center’s capabilities as a network 

of virtual services so that users are able to access and deploy applications from anywhere in the Internet 

driven by the demand and Quality of Service (QoS) requirements [2].  The fundamental concept of cloud 

computing is to share resources among cloud service consumers, cloud partners and cloud vendors in a value 

chain [3]. The essential characteristics of Cloud computing can be represented with scalability, flexibility, 

quality of service (QoS) guaranteed on-demand service provisioning and resource pooling [4]. By exploring 

these advantageous functions of Cloud computing, it is possible to delegate computing and data on desktops 

and portable devices to large data centers, called cloud services [5].  

There are several key challenges associated with provisioning of services on clouds: service discovery, 

monitoring, deployment of Virtual Machines (VMs) and applications, and load-balancing among others [6]. 

In particular, the resource requests for cloud services change over time and the computing resources can be 

allocated dynamically upon the requirements and preferences of consumers. Therefore it is not easy to 

dynamically and efficiently allocate the cloud resources because consumers may access applications and data 

in the “Cloud” from anywhere at any time and different users have conflicting preferences [7]. Additionally, 

although Cloud has been increasingly seen as the platform that can support elastic applications, it faces 

certain limitation pertaining to core issues such as ownership, scale, and locality. For instance, a Cloud can 

only offer a limited number of hosting capability to application services at a given instances of time: hence, 

scaling the application’s capacity beyond a certain extent becomes complicated [6]. Therefore, traditional 

system-centric resource management architecture cannot process the resource assignment task and 

dynamically allocated the available resources in a cloud computing environment [7].  

For these reasons, effective and efficient resource allocation is a core and challenging issue in Cloud 

computing, and a next-generation technology requires flexible resource management such as monitoring 

current service requests and adjusting schedules, prices, and amount of allocated resources for service 

requests [2].  
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1.2 Challenges and motivation 

Recently, resource allocation mechanisms are developed or analyzed for each service types of Cloud 

computing, Software-as-a-Service (SaaS) [8], Infrastructure-as-a-Service (IaaS) [9], and Platform-as-a-

Service (PaaS) [10]. These researches cannot represent the conflicting relationship among users or the 

requested Cloud services from users. In order to consider the conflicting relationship of Cloud computing, it 

seems that a game theoretical approach is needed for developing efficient resource allocation mechanism. 

Great deals of researches have proposed game theoretic resource management mechanisms for Grid 

computing [11-20], and a few researches for Cloud computing [4, 21-23]. However, there are great 

differences between the Grid computing and Cloud computing in terms of basic objectives, characteristics 

and the way of assigning tasks and allocating resources [24]. Hence, it is difficult to directly apply the prior 

mechanisms which are developed for the traditional grid computing to cloud computing. In addition, most of 

prior game theoretic approaches in both Grid computing and Cloud computing have adopted the efficient and 

effective scheduling or discriminative mechanisms like auctions. Thus, it seems to be difficult to guarantee 

the vital characteristics of Cloud computing, on-demand service provisioning, and also to correspond to the 

dynamic change of users’ requests. Consequently, for the efficient and effective Cloud service providing, a 

new approach for task assignment and resource allocation should be developed to guarantee the on-demand 

service provisioning as well as the high level of system performance, which can be evaluated with general 

quantitative metrics such as average lead time, network bandwidth, completion time (make-span), task costs, 

reliability and fairness  [7, 25]. These requirement of performance evaluation can be found in the increased 

importance of Application Performance Management (APM) of Cloud computing. As more applications are 

pushed on the cloud, monitoring performance and measuring the SLAs for application performance in cloud 

[26]. The software packages such as AppDynamics, Koscom, Ovum, and CA APM provide the function of 

performance evaluation in the view point of users as well as monitoring over the whole resources including 

infrastructure, network and application for Cloud services.  

As included in the pool of metrics of performance evaluation and  Ergu, et al. and Chandak, et al. have 

pointed [7, 25], the fairness should be included in the pool of metrics for performance evaluation. Because 

users pay costs according to the amount of resource usage in Cloud computing, the effectiveness and 

efficiency of resource usage become the primary metrics in cloud users’ position. 

In addition, resource allocation and task assignment mechanisms in the prior researches have been developed 

in order to make service provider’s utility or profit higher, not considered the users. Thus, in order to keep 

the better continuity of business, a Cloud service provider should be able to guarantee not only higher 
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efficiency (or effectiveness) but also relatively higher fairness compared with other users or past service 

using experiences. 

 

1.3 Contribution 

The ultimate goal of this paper is to propose an efficient resource allocation mechanism in Cloud computing 

environment, which can enhance the fairness of resource utilization while considering the conflicting 

relationship among the requested Cloud services. 

In order to accomplish the ultimate goal, we adopt a bargaining solution, Nash bargaining solution (NBS), 

which is well known to guarantee the fairness based on the utility among players in competition, for task 

assignment and resource allocation in cloud computing services.  With the proposed mechanism, it seems to 

be possible to effectively and efficiently utilize limited computing resources while guaranteeing the on-

demand cloud service provisioning.  

We also present and analyze numerical experiments to show that the proposed mechanism guarantees better 

performance than existing methods such as proportional share (PS), Auction and the equal rate allocation 

system (ERAS). From the result of analysis, it has been shown that the proposed mechanism using NBS 

guarantees the shortest average lead time and make-span than others, and provides a relatively higher 

fairness of utility-cost ratio.  

The proposed mechanism, NBS, can be applied to general cloud services such as SaaS, IaaS  and PaaS, and 

hybrid services which are combined with general services by modeling cloud resources such as CPU, 

memory, physical disk space and bandwidth as general cloud resources. It also supports cloud service 

providers in flexibly managing their limited resources in a cloud computing environment in terms of quality 

of service. 

The remainder of this paper is organized as follows: We introduce related work in Section 2. The overall 

procedure of the proposed mechanism is explained in Section 3, and the detailed algorithms for task 

assignment and resource allocation are then described in Section 4. We illustrate the performance of the 

proposed mechanism with numerical experiments in Section 5. Finally, we conclude the paper in Section 6. 

 

2. Related Work 

2.1 Game theoretic resource allocation mechanisms 
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Resource allocation has been a research topic and key factor in distributed computing and grid computing 

[23, 27-30]. Various game theoretic solutions have been adopted in settings of both Cloud and Grid 

computing [22]. Generally, the game theory concerns the necessity of decision making in a certain situation 

where by two or more rational opponents are being occupied under conditions of competition along with 

conflicting interests in expectation of definite outcomes in excess period of time [31]. Game-theoretic 

resource allocation mechanisms are categorized based on the types of models such as general equilibrium, 

bargaining and negotiation, bid based proportional sharing, and auction. Especially, Buya et al., have 

introduced various economic approaches such as commodity market model [32], posted price model, 

bargaining model, tendering/contract-net model, auction model, bid-based, proportional resource share 

model [14].  In this section, the game theoretic task assignment and resource allocation mechanisms for Grid 

computing and cloud computing are summarized at first. And then, task scheduling models and other issues 

related resource management are discussed.  

 

General equilibrium: The resource allocation approaches applying economics in Grid computing have been 

covered in many researches [13, 14, 33-37]. The majority of them investigated the economy in general 

equilibrium, which can be converted to the Nash equilibrium (NE) [31]. Yazir et al. [38] proposed a new 

approach for dynamic autonomous resource allocation in computing clouds through distributed multiple 

criteria decision analysis. Lee and et al. (2010) suggested an evolutionary game theoretic mechanism, which 

is called Nuage, allows applications to adapt their locations and resource allocation to the environmental 

conditions in a cloud [39]. Bayesian Nash Equilibrium Allocation algorithm to solve resource management 

problem in cloud computing has been developed by Teng and Magoulès. They have been shown that cloud 

users may receive Nash equilibrium allocation solutions according to the gambling stages, and the resource 

will converge to the optimal price [40]. Wei and et al. (2010) developed a stepwise mechanism for a QoS 

constrained resource allocation problem in cloud computing. Their game theoretic solution is obtained by 

two steps. First, each participant solves its optimal problem independently, and then evolutionary mechanism 

which takes both optimization and fairness into account is designed [23].  

 

Auction: Auction is the most popular resource allocation mechanism when users or tasks compete for limited 

computing resources in Cloud computing as well as Grid computing because it can describe the negotiation 

process well and is easy to understand and implement. Lei and et al. (2008) proposed an auction based 

resource allocation mechanism using prediction of others’ bid based on the mean value of historical bids [16]. 

Auction model using SimGrid framework [15], combinatorial auction based resource allocation protocol [11], 
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and the Continuous Double Auction [18] have been adopted to resolve some ineffectiveness of grid resource 

allocation. Different from these mechanisms using only a singular price and match, there exists a research 

which adopted more sophisticated auction protocol [19]. Also, decentralized auction mechanism has been 

adopted in resource accounting systems such as POPCORN [17], Spawn [20], and CPM [12]. Sun et al. 

(2012) has developed a resource allocation model, ESPSA, based on the second price auction for both grid 

and cloud computing environments. This model introduced a bidder number restriction method to assure the 

victorious probability of each users and resource brokers [22]. Also, they developed a heuristic resource 

allocation algorithm based on a continuous double auction and M/M/1 queuing model to improve both 

performance-QoS and economic-QoS simultaneously [4].  

 

Bargaining and negotiation model: In the bargaining model, resource brokers bargain with Grid Service 

Providers (GSPs) for lower access prices and higher usage durations. Both brokers and GSPs have their own 

objective functions and they negotiate with each other as long as their objectives are met. This negotiation is 

guided by user requirements and brokers can take risks and negotiate for cheaper prices as much as possible, 

and they can discard expensive machines. However, this might lead to lower resource utilization, so GSPs 

generally employ this model when market supply and demand and service prices are not clearly established 

[14]. An et al. devised a negotiable contract model with commitment price and de-commitment cost between 

the cloud service provider and customers, which the agents negotiate to generate contracts for resource leases 

for a fixed time interval [21]. Wei et al. proposed a two-stage optimization algorithm using game theory [23].  

 

Bid based proportional sharing: Resource allocation models using bid-based proportional resource sharing 

are quite popular in cooperative problem solving environments such as clusters (in a single administrative 

domain). In this model, the percentage of resource share allocated to the user application is proportional to 

the bid value in comparison to other’s bids [14]. Examples systems such as Rexec/Anemone, Xenosevers 

and D’Agents CPU market employ a proportional resource sharing model in managing resource allocations 

[13]. 

 

Task scheduling: Efficient task scheduling mechanism can meet users’ requirements and improve the 

resource utilization [41]. An evolutionary mechanism and game theoretic method have been developed to 

find the optimal schedule of dependent cloud computing services based on the simulation approach [42]. By 

applying game theoretic approaches, most of resource allocation scheduling model have considered the 

relationship between users and grid resources, not the interaction among users [43].  Especially, Ergu, et al. 
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suggested a task oriented scheduling mechanism using Analytic Hierarchy Process (AHP) in Cloud 

computing [7]. They set the rank on the cloud tasks based on the results of pairwise comparison among 

dynamically requested tasks and user preferences for evaluating performance of resource allocation, which 

rank values are utilized as the criteria for task scheduling and resource allocation.  

 

Other issues: In addition, the issue of determining how many hosts or resources are adequate for maintaining 

stable services while satisfying obligations [44], and autonomic detecting and dynamic resolving models 

(scaling up or down) for bottlenecks in a multi-tier Web application hosted on a cloud based on response 

time [45] have been introduced. 

 

There are some different features in the process of assigning tasks and allocating resources between the 

Cloud computing and other paradigms. First of all, for grid computing, the resources are highly 

unpredictable, heterogeneous, and their capabilities are typically unknown and changing over time, which 

may connect and disconnect from the grid at any time. Therefore, the same task is sent to more than one 

computer in Grid computing, and the user receives the output of the computer that completes the task first 

[24]. Dynamic allocation of tasks to computers is complicated in the grid computing environment due to the 

complicated process of assigning multiple copies of the same task to different computers [7]. However, 

Cloud computing enables users to access to a cloud computing environment to visit their data and obtain the 

computation at anytime and anywhere [46]. In addition, Cloud computing is attempting to provide cheap and 

easy access to measurable and billable computational resources comparing with other paradigms. Hence, 

various task assignment and resource allocation mechanisms cannot be directly applied to Cloud computing 

without modification.  

 

2.2 Limitations   

Despite a variety of studies, some limitations to develop efficient and effective resource management 

mechanisms for Cloud computing still remain. First of all, resource management should take into 

consideration the essential characteristic of Cloud computing, QoS-guaranteed on-demand services, which 

distinguish from other computing paradigms [47]. It means that users can access cloud services just at the 

time when they request while providing a certain level of service quality. Most of prior researches have still 

adopted discriminative approaches such as auctions or market based models which guarantee the more 

bargaining power to certain users to increase profit of the service provider. However, task scheduling or 
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discriminative assignment mechanisms such auction assume that the requested task can be delayed for the 

efficiency of the resource utilization.  

It may also cause the problem that requested tasks are aborted or discarded. Note that, before a task is 

aborted or discarded, it consumes system resources including network bandwidth, storage space, and 

processing power, and thus can directly or indirectly affect the system performance [48].  

Thus, it may be said that the ultimate goal of Cloud computing cannot be accomplished. In other words, the 

performance of the resource utilization may be evaluated based on the delay of completion time (make-span), 

but the starting time of task execution should not be delayed after the requested time. In addition, both the 

efficiency and effectiveness can be enhanced simultaneously if it is possible to prevent the resource 

utilization get lower while applying the bargaining model. Therefore, a dynamic and flexible resource 

management is required to guarantee the on-demand service provisioning. 

In the most game-theoretic mechanisms adopted to solve optimization problems of competitive resource 

allocation and task assignment, each task is considered as an independent decision maker that competes for 

cloud resources [23]. These independent players can participate in the resource allocation game only when 

the fair mechanism is assured. The fairness of the market means that each resource owner has an equal 

opportunity to offer its resource and it can obtain a fair profit according to its capability [49]. Although the 

fairness of resource allocation should be considered as the criteria for the performance evaluation like 

response time, compete time and reliability, only two models, commodity market model [32] and incentive 

based scheduling [49] in Grid computing have tried to minimize the fairness deviation among resources. It is 

hard to find researches which consider the fairness in Cloud computing. 

Motivated by these considerations, we have devised a task assignment and resource allocation mechanism 

using the bargaining solution, Nash Bargaining Solution (NBS) to guarantee the on-demand service 

provisioning as well as the fairness of resource allocation which is evaluated with utility-cost ratio. 

 

3. Proposed Mechanism 

In this section, we describe the overall procedure of the proposed task assignment and resource allocation 

mechanism using NBS. The system architecture of the proposed mechanism focuses on the procedure of 

Cloud service execution, as shown in Figure 1. The system to provide cloud service is generally composed 

with four different layers: user interface layer, service management layer, service execution layer and 

resource virtualization layer. 
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Figure 1. Architecture of a cloud computing system 

 

First of all, the Cloud service provider like Google, Amazon, and Salesforce.com designs and deploys its 

own services in the service management layer. This cloud service may be composed with one or more unit 

services. Each unit service can be characterized with the minimum requirement of resource and unit price. 

Like conventional Web-based services, users request the service provider to execute Cloud services through 

the user interface layer. After user requested Cloud services, a new instance of requested unit Cloud service 

is created, called a task. The properties of a task follow those of the requested unit service. For example, let’s 

assume that a Cloud service for the quotation is composed with three different unit services such as create 

customer, create quotation table and compare with other quotation, and it has been deployed in the Cloud 

system. If two different sales representatives request a quotation service, respectively, two different set 

composed with three predefined tasks are initiated and requested according to the flow of tasks. Then, Cloud 

system should execute the requested tasks and provide the results, respectively.  

In the proposed system structure, these requested tasks are gathered in a task pool in the service management 

layer and then handed over to the service execution layer. In the service execution layer, upon the arrival of 

tasks, a QoS-based task management module chooses the proper distributed servers in the resource 

virtualization layer which can guarantee the higher level of utility (QoS). After executing the tasks, the result 

is provided to the users. In this paper, we focus on task assignment and resource allocation in the service 

execution layer, which is composed of distributed physical servers.  
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To simplify the task assignment and resource allocation problem without loss of generality, we assume that 

the cloud computing environment is characterized as follows: (1) independent and indivisible cloud task: a 

task is a minimum independent and indivisible service unit, (2) single type of resources: all physical service 

are composed with a single type of resource and all unit services require the single type of resource and (3) 

Agent based automatic performance evaluation: the device users own has an agent to communicate with the 

cloud system to submit requests and receive the computational result, thus users can quantitatively evaluate 

the QoS based on the lead-time to complete the requested tasks. The notations used in the proposed 

mechanism are summarized in Table 1. 

Table 1 Notations and descriptions 

Notation Description 

S set of services provided in cloud computing 

cs unit price of a resource while using service s∈S 

Rs
0
 minimum amount of resources required for executing service s∈S 

M set of cloud servers  

Qj resource capacity of the cloud server j∈M 

T set of tasks in services requested by users, Ti∈T and Ti∈S 

ci unit price of a resource while executing task i, Ti∈T  

bi available budget for executing task i that a user has set 

Rs
0
 minimum amount of resources required for executing task i, Ti∈T 

Ri
total

  total amount of resources requested by users, Ri
total

=bi/cs 

Ri
t
 amount of resources allocated to task i at time t 

Xi
t
 utility of task i, a function of the amount of allocated resources at time t, Xi

t
 =πi(Ri

t
) 

 

There are |S| types of unit Cloud service, and the characteristics of each service are represented by the unit 

cost per resource (cs) and the minimum resource amount (Rs
0
). Since the task Ti is an instance of cloud 

service, all properties of a task follow those of the corresponding cloud service. Therefore, if a task, Ti is an 

instance of a service type s, the minimum requirement and unit cost of the task become equal to those of 

service s, (Ri
0
 = Rs

0
, ci=cs), respectively. On requesting task Ti, users set the budget (bi) for executing the task. 

Here, the total resource requirement (Ri
total

) is determined by bi/ci, and there are m distributed physical 

servers with maximum resource capacity (Qj).  
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Figure 2. Description of the problem: Task assignment and resource allocation 

 

The proposed mechanism performs task assignment and resource allocation using a bargaining solution. The 

overall structure of the problem is depicted in Figure 2. It is assumed that there are m distributed physical 

servers with maximum resource capacity (Qj). The first problem pertains to which distributed server the 

requested cloud task is assigned to. Let xij be a binary decision variable indicating whether task i is assigned 

to cloud machine j. The equation, ∑j∈M xij=1, can be established because a task is a minimum indivisible 

service unit. Since each server has a different resource capacity Qj, the amount of resources allocated to the 

tasks is dependent on the maximum capacity of the distributed server and the requirements of other tasks that 

are assigned to the same server. The second problem is determining how to allocate resources to tasks 

assigned to the same server. Because the amount of allocated resources determines the utility of each task 

(QoS), all tasks compete with other tasks to secure as many resources as possible. These two problems 

should be integrated because the result of one problem has an impact on the other.  

Here, the integrated problem is modeled as a game of tasks that compete for the limited resources of servers. 

Thus, the task assignment and resource allocation mechanism should guarantee that all tasks have the best 

utility. Bargaining solutions such NBS and KSBS are utilized for the resource allocation mechanism because 

they are known to guarantee fairness. In this paper it will be shown that the problem can have at least Nash 

equilibrium by proving that the problem can be transformed into a congestion game. The Elementary 

Stepwise System (ESS) is also proposed to guarantee that the Nash equilibrium can be reached in polynomial 

time.  
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Algorithm 1. Task assignment and resource allocation 

Input:  

a task set, T (∋Ti) and the total requirement of each task ( Ri
total

) 

a cloud servers set, M (∋Mj) and maximum amount of resources required for each server (Qj) 

task sets requested at time t, N
t 
(⊆T), 0≤ t ≤ t

MAX
  

Set t=0 

Repeat  

Set the status of Ti∈N
t
 to ‘on’ 

Randomly assign tasks whose status are ‘on’ (∑t Ri
t
<Ri

total
 ) to cloud servers 

Update the maximum requirement of tasks, Ri
MAX

 = Ri
total

-∑t Ri
t
 

 

Repeat at most (n-1) times { 

1) Allocate resources (Qj) to tasks that are assigned to server j using Resource-Allocation (R
MAX

, c, Qj) for 

all j (∈M) 

2) Calculate utilities (Xi) for the allocated resources 

3) Create an ordered queue of tasks SEQ in descending order of the utility gaps, Xi
MAX

 - Xi 

4) Update the task assignment using ESS (described in Algorithm 2) with SEQ and Resource-Allocation 

(R
MAX

, c, Qj) 

} 

  set the status of tasks to which all required resources are allocated (∑t Ri
t
=Ri

total
) as ‘off’ 

  t  t+1 

Until  t ≤ t
MAX

  

 

Resource-Allocation (R
MAX

, c, Qj){ 

    Ri =0; 

while (∑i Ri=Qj or Ri= Ri
MAX

 , for all i) { 

       Ri = Ri+ amount of resources  allocated to task i using one of the resource allocation methods; 

       Qj= Qj-∑i Ri; 

       R
MAX

 = R
MAX

 - Ri; 

   } 

return R; 

} 
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The ultimate goal of this research is to develop a task assignment and resource allocation mechanism to 

enhance the utility of all requested tasks. This goal can be achieved by Algorithm 1, which describes the 

overall procedure of assigning tasks to distributed servers that can guarantee the better utility. The utility of 

task i, Xi = πi(Ri), is calculated based on the amount of allocated resources. In this algorithm, once tasks are 

assigned to a distributed server, resources are allocated using resource allocation mechanism until all 

amounts of resources in a server are consumed or the maximum requirements are met of all assigned tasks. 

And, the sequence of server change is then determined based on the gap between the maximum and current 

utilities (Xi
MAX

 - Xi). Each task changes its server choices if another server guarantees greater utility than the 

current one. This procedure is repeated until an equilibrium status is reached. 

The procedures and criteria for resource allocation which is described in the function, Resource-Allocation 

(R
MAX

, c, Qj), vary with the different resource allocation mechanisms. Details of the resource allocation 

framework are given in the following sections. 

 

4. Utility-Based Task Assignment and Resource Allocation 

In this section, the utility function of a task is first devised considering the characteristics of cloud computing 

service. Then, the task assignment and resource allocation framework based on utility are described in detail.  

4.1 Utility function of a task 

A utility function is the criterion used for task assignment and resource allocation in this research. As 

depicted in Figure 1, Cloud services are continuously and dynamically requested from users, and distributed 

servers should execute the requested tasks and present the result to users as soon as possible. Meanwhile, 

users do not recognize which cloud server will take their tasks and how many resources are allocated to the 

tasks. Thus, users can evaluate the quality of services based only on how their tasks are executed. In this 

paper, we present a utility function inspired from the concept of response time in order to consider the 

fundamental characteristics and relationship between the Cloud system and users. In practice, prior 

researches [50-52] have shown that the response time is dependent on the amount of allocated resource and 

user’s utility function in Cloud computing has the inverse relationship with the response time.  

Figure 3A shows response time as a function of the amount of allocated resources. As the amount of 

resources increases, the response time decreases and gets close to a certain point (Di). From this point of 

view, the utility, which is defined as the value a user places on the cloud services according to the amount of 

allocated resources, can be illustrated as shown Figure 3B. As the amount of allocated resources increases, 

the marginal utility decreases.  
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Figure 3. Response time and utility (QoS) vs. amount of allocated resources: A, response time; B, utility 

 

By reflecting the fact that utility is inversely proportional to response time, we devised a generalized utility 

function as follows:  

  
 

  

0

0

i i i

i i

i i i i

R R
QoS R

D R R








 
, (1) 

where Ri is the amount of allocated resources, and ω, k, Ri
0
 and Di are parameters dependent on service type. 

Note that ki and ωi are positive and Di is non-negative. Here, the amount of allocated resource (Ri) for task i 

should be equal to or greater than the minimum requirement (Ri
0
). If Ri is less than Ri

0
, the QoS becomes zero. 

Therefore, the minimum requirement can be interpreted as the disagreement point or the minimal 

requirement for guaranteeing the performance isolation.  

 

4.2 Utility-based task assignment 

In this study, task assignment is performed based on the utility derived from the amount of allocated 

resources. If the assignment of multiple tasks can change simultaneously, the resource allocation plan cannot 

be achieved [53-55]. Therefore, we assume that only one task can change the server selection at a time, and 

we implement the framework with ESS. It has been proven that ESS converges to Nash equilibrium [54] and 

that the required number of task assignments for n tasks to reach Nash equilibrium is at most n-1, which is 

linearly proportional to the number of tasks [56].  

In the remainder of this subsection, we describe how to apply ESS to our problem. The order in which to 

change the server selection is determined based on the utility gaps of tasks, ρi(xij)=Xi
MAX

-Xi
*
, which is defined 

as the difference between the maximum achievable utility and current one. Hence, the bigger utility gap a 

task has, the earlier the task changes the server selection. The procedure of the proposed ESS is described in 

Algorithm 2. 
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4.3 Resource allocation using bargaining game solutions 

Here, the resource allocation framework using a bargaining solution, NBS, is explained under the 

assumption that all tasks are assigned to servers.  

 

4.3.1 Bargaining power and feasible solution 

The bargaining power of tasks should be defined before developing resource allocation mechanism using the 

NBS. Generally, since bargaining power is used to represent the discriminated priority to the resource, the 

bargaining power is defined based on the unit price of the cloud service that is instantiated by a task as 

follows: 

 

 
1

1

1

i
i n

jj

c

n c
 




 
  
  
 

. (2) 

 

The service provider can adjust gaps in bargaining power among tasks using the parameter, ξ (0).  

 

Algorithm 2. ESS for task assignment 

Input:  

Ordered queue of users, SEQ 

task assignment x=(xi·), i∈SEQ 

Repeat 

1) Retrieve a task with the largest utility gap in SEQ. u=SEQ.pop() 

2) Suppose task u is assigned to cloud server w (i.e., xuw=1).  

If another cloud server can offer greater utility than w, update the task assignment of u.  

   * arg max u uj
j M

s R x


  

     * *if , 0 and 1.u uw u uw usus
R x R x x x     

Until SEQ is empty 
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4.3.2 Nash bargaining solution (NBS) 

Only one generalized NBS X
*
=(X1

*
, …, Xn

*
) exists that satisfies the six axioms explained in [57]. 

Additionally, the generalized NBS is the solution of the following optimization problem [58, 59]:  
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where (X1, …, Xn) is the joint utility point in the feasible solution, S, defined in 4.3.1 with bargaining power 

. In this study, the disagreement point, d = (d1, …, dn) is assumed to be the origin. For any optimization 

problem with differentiable objective and constraint functions for which strong duality holds, any pair of 

primal and dual optimal points must satisfy the Karush-Kuhn-Tucker (KKT) conditions. Moreover, if the 

primal problem is convex, the KKT conditions are sufficient for the points to be primal and dual optimal [60]. 

If it is possible to assume that G(X) is a concave function and S is a convex set, the primal problem is convex 

[57]. In addition, if G(X) is a non-decreasing function, the optimal solution should be in the bargaining set B, 

which is a set of all individually rational, Pareto optimal utility pairs in a feasible solution, S [61, 62]. Thus, 

the optimization problem can be expressed as follows: 
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Since the objective function and constraint functions are differentiable, the following KKT conditions are 

established [57]:  

1) Primal constraints:    0

01 1
/

n n

i i i i i ii i
X D X Q R 

 
    , Xi>0 for all i; 

2) Dual constraints: 0; 

3) Complementary slackness: iXi=0 for all i; 

4) The gradient of the Lagrangian with respect to X vanishes: (∇G(X))i-i+(ii/(i-D0iXi)
2
)=0 for all i; 
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where (∇G(X))i represents the ith element in the vector of ∇G(X) and i and  are Lagrangian multipliers 

associated with the ith inequality constraint and equality constraint, respectively. The gradient of the 

objective function is as follows: 

 

 1
111

1 1 2 1
( ) ,...,i n i

T
n n

i n n ii i
G X a X X a X X

   

 
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   . (5) 

 

The first condition is satisfied because the generalized NBS is a point in the bargaining set, B. The third 

condition (complementary slackness) is satisfied by setting i=0 because Xi>0 for all i due to the assumption 

that a higher utility than the disagreement point is allocated to each task. Hence, the second condition (dual 

constraints) is obviously satisfied. From the last condition, the gradient of the Lagrangian can be rewritten as 

(∇G(X))i-(ii/(i-D0iXi)
2
) for all i. Since  is a constant, the relationship between Xm and Xk is established 

by setting mth and kth rows to be equal as follows: 
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By applying this equation, the NBS can be easily obtained if one of the points can be fixed. When assuming 

the utility of the first task is obtained, the utilities of the remaining tasks can be determined by using the 

following equation:  
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(7) 

 

Here, the bisection method [60] is applied to the optimal solution because it can be used to obtain the 

solution in the n-th polynomial time. By adopting the upper bound (u=Q) and the lower bound (l=Ri
0
) of 

resource allocation, the bisection method can be easily applied. The method then requires exactly log2((u-

l)/) iterations [57]. 
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5. Illustrative Experiments 

In this section, the results of numerical experiments are presented to illustrate how the proposed task 

assignment and resource allocation framework works and the superior performance of the mechanism 

compared to other resource allocation frameworks. 

 

5.1 Experimental design 

A few assumptions for experimental design  such as the type and the amount of resources are chosen from 

the CloudSim model [6] which characterizes and simplifies the general circumstances of Cloud computing. 

Other assumptions and parameters for the experiments are artificially generated to illustrate how the 

proposed mechanism works. Especially, the parameters for the utility functions, D0i, wi, and ki, can adjust the 

characteristics of utility functions, such as the maximum level, the velocity of convergence, and sensitivity to 

the amount of allocated resources. Thus, the values are selected to illustrate the environment of general cloud 

computing by utilizing the minimum response time of a famous cloud service, Google Calendar, and the 

maximum tolerable waiting time. The parameters for the experiments are summarized in Table 2. 

Table 2. Parameter settings for numerical experiments 

Parameters for experiments Parameters for cloud service types 

Parameters Values no. c D0 ω κ λ no. c D0 ω κ λ 

M 10 1 1.0 0.01 4.9 10.0 0.5 6 1.2 0.03 5.1 10.2 2.0 

Q 4GBytes RAM 2 1.1 0.01 5.1 10.1 0.5 7 1.3 0.03 5.2 10.0 1.0 

T |T|=1,000 3 1.1 0.02 5.0 10.2 1.0 8 1.3 0.03 5.3 10.1 1.0 

Ri
0
 0, ∀i∈T 4 1.2 0.02 5.1 10.0 1.0 9 1.3 0.04 5.2 10.2 0.5 

S |S |=10 5 1.2 0.02 5.2 10.1 2.0 10 1.4 0.04 5.3 10.0 1.0 

 

In the experiments, to make the experiments simple, it is assumed ten types of Cloud service, which each 

service has different parameters for utility function and unit price for single type of resource. The minimum 

requirement for all service type is assumed as zero, and the maximum requirement is determined based on 

the level of budget that users have randomly set for each service request and the unit price of requested 

service type (Ri
MAX

 = bi/ci). This maximum requirement is continuously updated according to the result of 

resource allocation as in Equation (8). In the equation, t is the index of iteration time. If the maximum 

requirement is satisfied at the time t, (Ri
MAX,t

=Ri
t
), the requested task, Ti, is terminated. 

 

 
,MAX t total

i i it
R R R

 
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In order to quantitatively evaluate the performance of task assignment and resource allocation, an artificial 

workload model which services are randomly requested, at first. We have developed a workload model by 

using random arrival process which follows a Poisson distribution with arrival rate, λ. This arrival rate of 

each service type has its own value. However, in order not to make characteristics of service types have 

impacts on the result of simulation, the total number of service requests for all service types is equally set to 

be one hundred. Consequently, a thousand tasks are randomly requested. The simulation will be terminated 

when the all tasks are terminated. Also, we assumed that there are ten distributed servers, that each server has 

4GBytes of RAM memory.  

By synthesizing the results of repeated simulation with these assumptions and settings, it may be able to 

evaluate the efficiency and effectiveness of proposed task assignment and resource allocation mechanism 

when cloud servers are crowded with tasks.  

5.2 Other resource allocation mechanisms 

The performance of the proposed framework in allocating resources is evaluated in comparison with other 

resource allocation frameworks, including the ERAS, PS and PA. On-demand service provisioning means 

that all tasks should be executed as soon as requested. In other words, the service provider should allocate 

resources to all requested tasks. The resource allocation mechanisms—NBS, MRPS, CBPS and ERAS—are 

able to guarantee the on-demand provision of service. PA guarantees on-demand service provisioning only to 

tasks with higher bid prices, while making the other tasks wait for their services until resources are available. 

Even though PA cannot guarantee on-demand service provisioning to all tasks, it has been included to 

compare the other metrics’ agility and efficiency. 

ERAS is the most simple and intuitive resource allocation framework, which is supposed to guarantee 

fairness by allocating exactly equal amounts of resources to all tasks remaining in the system. Here, to avoid 

allocating more resources than required, the amount of resources allocated to task i at time t is determined by 

Equation (9).  

 

 
,min ,t MAX t

i it
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In this equation, n
t
 is the number of tasks remaining in the system at time t while applying the ERAS 

framework.  
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Different from ERAS, proportional share proportionally allocates resources according to the weights of each 

task. Two different proportional share mechanisms, maximum requirement-based proportional share (MRPS) 

and cost-based proportional share (CBPS), are adopted in the experiments. In these two mechanisms, the 

amount of allocated resources is determined according to the maximum resource requirements and costs, as 

calculated in Equations (10) and (11), respectively. 
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For a PA, a task can be interpreted as the bidder at an auction, and the unit price of service type and the 

maximum resource requirement at each time are regarded as the bid price and quantity, respectively. In a bid 

profile Φ=(Φ1,…, Φn), a task bid Φi means that task i wants to purchase a quantity Ri
MAX,t

 at the unit price, ci. 

The auctioneer adopts an auction rule A to determine an allocation A(Φ)=(R
t
(Φ), TC(Φ)), where Ri

t
(Φ) and 

TCi(Φ) are the quantity allocated to and the total cost paid by task i, respectively. The resource allocation rule 

of PA proposed in [58] is adopted as follows:  
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Equations (18) and (19) represent the fact that the resource Qj is allocated to tasks with a higher bid price 

prior to tasks with a lower price. Term Q(ci, Φ-i) denotes the quantity remaining after complete allocation to 

all tasks with higher prices than task i. Ri
t
(Φ) is the revised allocation rule proposed in [63]. If the remaining 

quantity Q(ci, Φ-i) is sufficient, Ri
MAX,t

 can be allocated to task i; otherwise, the remaining resource is divided 

amongst task i and the tasks with the same bid price as task i. Then, the remaining resource Q(ci, Φ-i) is 

shared proportionally to meet the maximum resource requirements of tasks, Rk
MAX,t

. In the event that the 

remaining quantity is sufficient, the remainder will be again allocated to the tasks that have lower bid prices 

than task i.  
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5.3 Performance evaluation 

For the performance evaluation, two different criteria, agility and efficiency, have been utilized. There is no 

doubt that agility and efficiency are the basic performance indicators for generic applications.  

 

5.3.1 Agility: Average lead time and makespan 

Generally, agility represents how long it takes the system to execute the requested cloud tasks. In this paper, 

the average lead time and makespan are utilized as the metrics for agility. The first metric, average lead time 

can be measured when each task is terminated because the requested time of each task is already known. 

Makespan is the measure throughput of completion time. It can be calculated as maximum of completion 

time [25]. 

Figure 4 shows the number of tasks remaining in the cloud computing system. All resource allocation 

frameworks show a different number of remaining tasks as time elapses. If there are more tasks remaining, it 

can be said that relatively more time is required to complete those tasks. 

 

 

Figure 4. The number of tasks remaining in the cloud computing system 

 

After all requested tasks are finished, the average lead time can be determined. To minimize the effect of 

randomness, the experiments are repeated 30 times.  

The distribution, mean and standard deviations of average lead times are summarized in Figure 5. And same 

information of makespan is depicted in Figure 6. 
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A. distribution of average lead time        B. mean and standard deviation of average lead time 

Figure 5. Distribution, mean and standard deviation of average lead time of the repeated experiments 
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A. distribution of makespan                  B. mean and standard deviation of makespan 

Figure 6B. Distribution, mean and standard deviation of makespan of the repeated experiments 

 

The random workload model and service type assigning make the requested time and total requirement of all 

tasks be randomly determined in each experiment. Thus, it is insufficient to compare agility with the simple 

average and standard deviation of average lead time ( LT ) and makespan ( MS ). For a more exact 

comparison, a paired t-test is applied because it can compare two population means of two samples by 

pairing observations in one sample with those in the other. With the results of paired t-tests, the following 

hypotheses can be tested.  

 H0:  NBSLT < otherLT , NBSMS < otherMS  

 H1: NBSLT ≥ otherLT , NBSMS ≥ otherMS  

The results of the paired t-tests of average lead time and makespan are summarized in Table 3 and Table 4, 

respectively 
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Table 3. Results of paired t-test comparisons of average lead time 

Results 

NBS vs. other mechanisms 

ERAS 
Progressive 

Auction 
MRPS CBPS 

μNBS-Other -1.1399 -3.279 -7.840 -1.1660 

σNBS-Other 0.3362 2.155 4.679 0.3374 

SE 0.0614 0.393 0.854 0.0616 

95% upper bound for 

mean difference 
-1.0356 -2.610 -6.389 -1.0614 

t-value -18.57 -8.34 -9.18 -18.93 

p-value 0.000 0.000 0.000 0.000 

 

Table 4. Results of paired t-test comparisons of makespan 

Results 

NBS vs. other mechanisms 

ERAS 
Progressive 

Auction 
MRPS CBPS 

μNBS-Other -3.042 -15.43 -16.63 -4.117 

σNBS-Other 2.230 14.74 12.69 3.353 

SENBS-Other 0.407 2.69 2.32 0.612 

95% upper bound for 

mean difference 
-2.351 -10.86 -12.69 -3.076 

t-value -7.47 -5.74 -7.18 -6.72 

p-value 0.000 0.000 0.000 0.000 

 

The paired t-test results indicate that the null hypothesis cannot be rejected. Therefore, it can be said that the 

resource allocation mechanism using NBS guarantees the best performance in both terms of average lead 

time and makespan.    

In addition to bargaining solutions, each resource allocation mechanism (PA, MRPS and CBPS) shows a 

different result. MRPS sets the weight of each task based on the maximum requirement and allocates a 

certain amount of resources to all tasks. Thus, MRPS terminates most of the tasks at the same time and 

shows worse performance than CBPS. 

 

5.3.2 Efficiency: Fairness index 

The performance of task assignment and resource allocation in Cloud computing should be evaluated based 

on cost and utility [64]. Thus, we have designed the metric, efficiency, to consider both cost and utility, 

simultaneously. QoS differentiation and adaptation is beyond the capability of systems in a traditional ‘‘best-

effort’’ service architecture. The best-effort service model offers excellent price-performance ratios in the 
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multiplexing of shared computing and communication resources. However, it does not allow for the 

simultaneous provision of excellent services and sustained high usage of shared resources [65]. Thus, the 

efficiency of resource allocation based on QoS is evaluated with the utility-cost ratio (ri
t
=Xi

t
/ciRi

t
) in this 

paper.  

As described in the first section, the fairness of the market means that each resource owner has an equal 

opportunity to offer its resource and it can obtain a fair profit according to its capability [49].  Only a few 

previous researches [32, 66] have tried to minimize the fairness deviation for the Grid computing. It is also 

evaluated based on the level of fairness of the resource allocation by comparing each task with others using 

the fairness index, which was developed in [67] as follows: 
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This fairness index can be applied to the utility-cost ratio in order to evaluate the absolute extent of user 

satisfaction and relative to cost. The average fairness indices of the experiments are depicted in Figure 7. 
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       A. distribution of average fairness indices         B. mean and standard deviation of average lead time 

Figure 7. The mean and standard deviation of average fairness indices of repeated experiments 

 

By referencing the Figure 7, we may intuitively expect that ERAS will show the highest FI value because it 

allocates exactly the same amount of resources to each task. On the other hand, the auction may show the 

lowest value due to the discriminating strategy. Instead, NBS, which guarantees the best performance in 

terms of agility, shows a level of fairness nearly identical to that with CBPS and ERAS.  

Like the case of agility in the prior subsection, the following hypotheses are tested based on the results of 

paired t-tests.  
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 H0: otherFI < NBSFI  

  H1: otherFI  ≥ NBSFI  

Table 5. Results of paired t-tests comparing the fairness index 

Results 

other mechanisms vs. NBS 

ERAS vs. CBPS 
ERAS 

Progressive 

Auction 
MRPS CBPS 

μX1-X2 0.010622 -0.09768 -0.08006 0.015951 -0.005329 

σX1-X2 0.002987 0.03237 0.02829 0.003353 0.000716 

SEX1-X2 0.000545 0.00591 0.00517 0.000612 0.000131 

95% upper bound for 

mean difference 
0.011548 -0.08764 -0.07128 0.016991 -0.005107 

t-value 19.48 -16.53 -15.50 26.06 -40.77 

p-value 1.000 0.000 0.000 0.000 0.000 

 

Table 5 shows the results of the paired t-tests. Based on the results, we can say that NBS did not show better 

performance than ERAS and CBPS, but PA and MRPS. As expected, the auction shows the worst 

performance with regard to the fairness index. It is notable that CBPS shows the best performance in terms 

of the fairness index. In addition, we cannot say that ERAS which is expected to show the best performance 

may perform better than or even equal to CBPS. The reason of these results can be found in the 

characteristics of fairness index of utility-cost ratio. Since the fairness index does not compare the absolute 

value of the utility-cost ratio, but computes the degree of fairness with the variance, it seems to be natural 

that NBS cannot guarantee the highest fairness index. Although NBS always guarantees the same or better 

level of fairness by comparing ERAS and CBPS, it is possible to say that the performance of NBS is not far 

behind ERAS and CBPS when considering the mean ratio of average fairness index of NBS to ERAS 

(98.7%) and CBPS (98.1%).  

When synthesizing the results of the performance comparison in terms of agility and fairness, we can 

conclude that NBS is more suitable for addressing the task assignment and resource allocation problem in a 

cloud computing system because it guarantees the best agility and has nearly the highest level of fairness. In 

other words, users will be satisfied with the rapid response time in the execution of requested tasks and will 

be assured that the Cloud service is fair to all users. 
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6. Conclusion 

In this paper, we presented a game-theoretic mechanism for task assignment and resource allocation in cloud 

computing. While previous studies on service deployment and resource allocation generally focused on the 

evaluation of service quality and resource allocation based on the relationship between a cloud service 

provider and users or on the users’ perspective, we devised a utility function based on the response time 

considering the characteristics of the cloud service. Then, we proposed a game-theoretic mechanism for task 

assignment and resource allocation using ESS and bargaining solution, NBS, based on the competitive 

relationship among tasks given limited cloud resources.  

Through numerical experiments, we showed that the proposed mechanism can guarantee better performance 

than existing methods including ERAS, MRPS, CBPS and PA, in terms of agility and fairness. Applying 

NBS for resource allocation guarantees that the requested tasks will be terminated earlier. Also, since this 

method yields a higher fairness with regard to the utility-cost ratio, resource allocation using NBS is more 

suitable for resource management in the cloud computing system than existing methods. In other words, with 

the proposed mechanism, a service manager can elastically manage cloud resources in response to the 

dynamic changes in user requests in a cloud computing environment.  Here, a limitation can be found in the 

characteristics of utility function. Actually, NBS can be adopted only when the convexity of utility functions 

can be assumed. Because the marginally decreasing utility function is the representative form as found in a 

great deal of prior researches, the convexity of utility function may be assumed. However, if the utility 

function shows different forms such as stepwise or sigmoid function, it is impossible to adopt the NBS. If the 

convexity cannot be assured, KSBS can substitute NBS because KSBS can find the Pareto optimal solution 

even though the convexity cannot be obtained while guaranteeing the similar level of performance to NBS 

[68, 69].  

In addition, the proposed game-theoretic mechanism can be applied to any type of cloud computing services, 

such as IaaS, PaaS and SaaS, by the general cloud resource interpreted as CPU, memory, physical disk space 

and network bandwidth, and the quality of service can be considered in terms of response time. Still, some 

limitations remain. In the proposed approach, only a single type of resource is assumed. However, in general, 

two or more different types of resources, for example CPU, memory and network bandwidth, are 

simultaneously required in order to execute a cloud task. Thus, the response time can be devised as an 

aggregate function with the different resources. Therefore, the proposed mechanism can be extended to 

consider resource combinations and optimization.  
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Finally, it remains as a future work to develop better heuristic algorithms which can guarantee the benefit of 

applying complex optimization algorithms. Although the complexities of the proposed heuristic algorithms, 

bisection and ESS, were relatively low, the overhead of applying algorithms may cause the degradation of 

system performance while assuming the extremely large number of tasks and servers. In order to applying 

the proposed mechanism to practical large scale Cloud computing systems, a new alternative can be 

developed to secure the benefit of applying heuristic algorithms as well as the system performance. 
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