
IEICE TRANS. INF. & SYST., VOL.Exx-D, No.xx JANUARY 20xx

1

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

PAPER

Context-Aware Dynamic Event Processing Using Event Pattern

Templates

Pablo Rosales Tejada

†
, Nonmember and Jae-Yoon Jung

††a)
, Member

SUMMARY A variety of ubiquitous computing devices, such as radio

frequency identification (RFID) and wireless sensor network (WSN),

are generating huge and significant events that should be rapidly

processed for business excellence. In this paper, we describe how

complex event processing (CEP) technology can be applied to

ubiquitous process management based on context-awareness. To

address the issue, we propose a method for context-aware event

processing using event processing language (EPL) statement.

Specifically, the semantics of a situation drive the transformation of

EPL statement templates into executable EPL statements. The proposed

method is implemented in the domain of ubiquitous cold chain logistics

management. With the proposed method, context-aware event

processing can be realized to enhance business performance and

excellence in ubiquitous computing environments.

key words: Context-awareness, complex event processing, ubiquitous

logistics, RFID, wireless sensor network

1. Introduction

Information technologies have played a key role in

logistics by providing tools that have greatly enhanced

their effectiveness and efficiency; bar codes and

electronic data interchange can be highlighted [1,2].

Recent technological developments make available new

components and combinations of them at the disposal of

logistics companies. The first are sensors technologies,

key enablers of the vision of ubiquitous computing [3,4].

In the context of ubiquitous logistics the following

sensor technologies deserve to be mentioned: a) radio

frequency identification (RFID), which provides

identification and data storage to facilitate the location of

objects through supply chain [5,6]; b) temperature and

humidity sensors, which allow monitoring and logging

temperatures and humidity of products and environments

along their transportation and storage [7,8];

c) security

devices such as door locks that allow recognizing and

controlling the state (open/closed) of the door at a

particular location [9]. These technologies have in

common two advantages that make them especially

attractive for logistics: automatic data capture and real-

time data collection [10]. The second family of

technologies is complex event processing (CEP). CEP

enables proactive action by real-time event processing as

follows: filtering out irrelevant information, aggregating

events, monitoring events at every level in information

systems, detecting patterns of events, tracing causal

relationships between events in real-time and taking

appropriate actions when patterns of events of interest

are detected [11]. And the third family of technologies is

context-aware systems, which provide significant

functionalities of surveying the environment, reasoning

about its information and taking the corresponding action

[12].

Although three kinds of technologies provide many

solutions for logistics management, they still have

limitations of directly applying to practical complicated

logistics environment. For example, in the cold chain

logistics, which we are focusing in this paper, it is

required to monitor and control various physical sensors

(e.g. temperature, humidity, CO2) for the purpose of

preserving the best quality of foods such as fruit,

vegetable, meat, and diary. However, it is not so easy to

integrate three kinds of technologies to one another while

configuring and maintaining a variety of food types,

logistics activities, facilities like vehicles and

refrigerators, etc. For instance, since the suitable

temperature and humidity are dependent on the food type,

we have to configure the best condition to every vehicle

and refrigerated storage according to the food types. To

address the issue, we present a new approach to

intelligent ubiquitous event processing by using CEP and

context-aware technologies. It is the combined issue of

context-awareness and ubiquitous complex event

processing.

In this paper we propose an approach to context-

aware dynamic event processing. It is performed by a

context-aware system to generate semantic event

processing language (EPL) statements to be executed in

CEP engines. Through the proposed approach we address

questions that arise in the context of ubiquitous logistics

environment: What are the monitoring activities

associated to a situation? What are the EPL statements

used to monitor that situation? What are the appropriate

actions to the situation based on the context?

Ubiquitous cold chain logistics is a good example

environment which the context-aware complex event

 Manuscript received July xx, 2012
 Manuscript revised xx xx, 20xx.
 † The author is with Universidad de San Carlos de

Guatemala, Zona 12, Ciudad de Guatemala, Guatemala.
 †† The author is with Kyung Hee University, Yongin,

Gyeonggi-do, 446-701, Republic of Korea.
 a) Corresponding author, jyjung@khu.ac.kr

IEICE TRANS. INF. & SYST., VOL.Exx-D, NO.xx JANUARY 20XX

2

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

processing is required to apply. In such logistics

environment, it is necessary to control many kinds of

ubiquitous sensing devices (e.g. temperature, humidity,

CO2, etc.) according to a variety of food types such as

diary, meat, fish, and fruit. CEP technology can filter and

detect event patterns for the huge amount of sensor event

streams, while context-aware technology can support

intelligent control according to the food types detected

by RFID data. Although main functions of the two

technologies could be implemented by conventional

technologies, the complexity of the system will increase

seriously because of event processing many devices and

food types.

On the contrary, in this paper we can edit flexibly

the event processing patterns and rules by adopting CEP

technology, of which core components include CEP

engine and EPL language. The two components enhance

flexibility and scalability of event processing in

integrated information systems like logistics. And we

also introduced context-awareness to reflect a variety of

food models to lessen the complexity of the integrated

systems. These can be said to be advantages of the

context-aware complex event processing proposed in this

research. In particular, EPL language plays a critical role

of flexibility and scalability by enabling automatic

generation of EPL statements in this research. Suppose

that we do not use EPL language which can be executed

in the corresponding CEP engine. We have to declare so

many similar event processing rules for each type of

foods, and each type of refrigerators. But, because we

adopt EPL language and CEP engine, we can register

some EPL statement templates shared to food types, and

the remainder of the complex environments (e.g.

temperature thresholds for each food types, managers of

each refrigerator, drivers of each vehicle, etc.).

By applying the proposed method, we foresee

benefits from two perspectives. From the technical point

of view, executable EPL statements are automatically

generated and enabled when the associated situations

arise in the logistics environment. And, from the business

point of view, the logistics process management can be

enhanced since sensor readings and domain knowledge

drive effective activity monitoring.

2. Related Work

A great number of previous studies have developed their

stand-alone system of context-aware event processing for

the last decade until CEP technology was developed.

SOCAM (Service-Oriented Context-Aware Middleware)

was a service-oriented middleware that had been

developed for building context-aware services [13]. They

also proposed a formal context model based on OWL

ontology language. In [14], SOCAM was also adopted

for developing RFID middleware to support the RFID

context-aware service model. Gao et al. [15] analyzed

sequential event patterns to create context-aware

adaptive application although they did not adopt CEP

technology (e.g. CEP engine or EPL language). Such

studies tried to develop concrete and robust context-

aware event processing systems, but they cannot be

regarded as flexible and scalable systems because their

event processing technique is dependent on their stand-

alone systems.

On the other hand, recent studies on event

processing started to adopt CEP engine and EPL

language, which are core component of CEP technology,

even though these engines and languages are not yet

standardized in the CEP application domain. CEP

technology was created to support flexible and rapid

processing of huge event streams. If EPL language is

used to define the even patterns and rule processing, it is

very easy to configure the event patterns and integrate

the event processing system to many legacy systems

such as RFID middleware, sensor system, and warehouse

management systems. For the flexibility and scalability

of CEP technology, we also apply it for context-aware

dynamic event processing in ubiquitous event processing.

CEP is an emerging technology of filtering,

aggregating, and detecting event patterns from a variety

of event streams such as sensor data, network speed,

stock ticks, and web search queries. The technology can

be combined to ubiquitous technologies in many

domains of application, which vary from logistics,

manufacturing, oil industry to entertainment. In this

section, we especially summarized the related works on

ubiquitous CEP and context-aware CEP, and then we

compared our approach and the previous research.

There are a few relevant work of applying CEP to

ubiquitous event processing such as sensor and RFID

data. Dunkel [16] proposes a reference architecture to

process and analyze complex event streams in real-time.

The architecture is built upon several concepts and

techniques. First, event-driven architectures provide the

architectural concept to deal with streams of events.

Second, ontologies are used to model the structure of

events and their relationships. Third, CEP is used as the

process model for event-driven decision support. And

fourth, sensor networks are used as the elements that

capture data from the environment and push it into the

event processing system. The processing of RFID events

is approached by using CEP in [17]. Some of the issues

related to the nature of RFID events, including

aggregation of events, high volumes of data and on-the-

fly processing, are addressed with a framework. The

framework includes the formalization of the specification

and semantics of RFID events and rules; it also provides

an RFID detection engine to process complex RFID

events. This framework can be used in applications such

as object tracking and real-time monitoring. Sensing

technologies and CEP have also been integrated in the

domain of cross-reality environments in the DejaVu

system [18]. However, the practical sensor event

processing systems such as cold-chain logistics

IEICE TRANS. FUNDAMENTALS, VOL.XX-X, NO.X XXXX XXXX

3

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

environment required more complicated context-aware

information processing. For example, they involve a

variety of food types, many kinds of vehicles, and lots of

refrigerators and storages, which increased the

complexity of event processing. They result in the

necessity of adopting context-awareness into the

ubiquitous event processing environment [19, 20], which

is focused in this paper. To deal with the issue, we

proposed a novel approach to context-aware complex

event processing by using EPL statement templates and

automatic generation of executable EPL statements.

3 Context-Aware Event Processing for Ubiquitous

Process Management

In this section we present the method for context-aware

event processing. We first present the framework for

context-aware event processing. We then introduce

semantic annotation to EPL statements to offer context-

awareness. We finally show the main components of the

method, their relationships and a high-level view of the

dynamics of the processing.

3.1. Framework

The framework for our approach to context-aware event

processing is composed of three layers as shown in Fig.

1. The Event Cloud Layer is where logical and sensor

events are created. The ubiquitous logistics environment

has equipped ubiquitous devices such as RFID and WSN

that generate physical events like temperature and

humidity. Enterprise information systems such as

Warehouse Management Systems (WMS), Supply Chain

Management (SCM), Business Process Management

(BPM) systems generate logical events such as the states

of activities and artifacts. The simple events generated in

the cloud layer are forwarded to the Event Processing

Layer, where the Event Middleware integrates events

and stores them for its later processing. Simple events

are then processed in the Complex Event Processing

module that creates high-level events representing

contextual information. Each piece of contextual

information is delivered to the Context Manager in the

Ontology Layer. The Context Manager plays a main role

in semantic annotation to EPL statements, which will be

explained in detail in the next subsection. The Context

Manager makes use of the Query Engine and the

Reasoning Engine to interact with the ontology.

Whenever a situation associated with an EPL statement

template is detected, the Context Manager finds the

appropriate values to create a context-aware EPL and

delivers it to the Complex Event Processing module.

Event Middleware

u-Logistics (RFID/WSN) WMS

Complex Event Processing

Physical Events
Event Cloud

Layer

Event Processing

Layer

Ontology

Layer

Context Manager Query Engine Reasoning Engine

Logical Events

SCM BPM

Context Ontology

Fig. 1 Framework for context-aware event processing.

3.2. Semantic Annotation to EPL Statements

Semantic annotation to an EPL statement is the process

of adding context to an EPL statement template, with the

purpose of generating an EPL statement ready to be

executed in a CEP engine. A panoramic view of the idea

is illustrated in Fig. 2.

EPL

Semantic

Annotation

Process

EPL Statement

Template

Context

Semantically

Annotated

EPL Statement

CEP Engine

Executable

EPL Statements

Libraries

CEP Running

Processes

Fig. 2 Panoramic view of the process for semantic annotation of EPL

statements.

An EPL statement template is an abstraction of EPL

statements which contains parameters in its clauses. The

parameters can be substituted with specific values

derived from context. Context in this case is the

information that characterizes a situation that is

associated to the template. The output of the process is

an executable EPL statement, which contains contextual

information on the parameters of the EPL statement

template. The executable EPL statement will be

registered in a CEP engine to process events.

We conceived semantic annotation to EPL

statements to be used in ubiquitous cold chain logistics

environments. EPL statements specify how the

underlying events in a system should be monitored.

However, the situations monitored with a particular EPL

statement running on a CEP engine may change

dynamically due to the dynamics of the business

environment.

Examples of such situation changes in cold chain

logistics environments are: a new driver is assigned to

pilot a truck; a new product is to be delivered to clients;

updated environmental conditions to transport a product

are required. These changes in situations imply

modifications of how a situation should be monitored.

That is, the values on EPL statements need to be adapted

in accordance to the situation at hand. This means that: a)

IEICE TRANS. INF. & SYST., VOL.Exx-D, NO.xx JANUARY 20XX

4

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

appropriate EPL statements should be selected for the

situation in hand and b) the selected EPL statement

should reflect the appropriate values. Selecting the

appropriate EPL statement and setting the suitable values

on the statement can be handled manually or

automatically. The manual approach is a daunting task,

considering the complexity in logistics environments

with many variables to handle. To implement the

automatic manner, we designed and implemented

dynamic event processing based on context-awareness.

3.3. EPL Statements for Process Monitoring

In this subsection we set the semantic annotation to EPL

statements in the context of business process. First, we

use a meta-model to explain the concepts and how they

relate to each other. And second, we explain the

dynamics of event processing by relating the concepts in

an algorithm.

As illustrated in Fig. 3, the meta-model for context-

aware dynamic event processing is composed of three

parts: business modeling, context-aware event processing,

and event sources. The top part is business monitoring

which is conducted in executing business processes

under business policy. A business process is regarded as

“a way for an organizational entity to organize work and

resources (people, equipment, information, and so forth)

to accomplish its aims.” A business policy is a directive

or guideline that shapes the design of business process

and monitoring activities. Monitoring activities are

verification tasks of a particular aspect of a process

performed by some agent, with the goal of complying

with the business policy. In this approach, the agent that

processes the events generated in the monitoring activity

is a CEP engine, which is provided with executable EPL

statements. An executable EPL statement is built from

two components: an EPL statement template and EPL

clause parameter values.

In the middle part, several situations of interest can

arise from the monitoring activity. It means that the

information used to reason context-awareness is

generated in business activities in business process.

When a situation arises, two things can happen: a) an

EPL statement template is required to be semantically

annotated and started or b) an executing EPL statement is

required to be stopped. Situations and EPL clause

parameter values are closely related to context, which

plays two main roles: a) it allows determining the

situation at hand by aggregating contextual information

and b) it provides the information to be used to fill out

the parameters in the EPL statement templates.

Finally, the bottom part contains largely two types

of event sources: sensors and enterprise information

systems. Events are objects that signify something that

occurs in the real world (captured with sensors) or

something that happens in an enterprise information

system (e.g. enterprise resource planning, customer

relationship management, workflow management). Such

enterprise information systems play a critical role of

providing information of activities in which many kinds

of events are generating. The information is important

because the same types of sensor events are differently

recognized if they are generated during different kinds of

tasks in enterprise information systems (e.g. activities in

enterprise information systems).

Business Process

Monitoring

Activity

Business

Policy

Situation
EPL Statement

Template

Executable

EPL Statement

Context
EPL Clause

Parameter Value

Sensor

Event

Enterprise

Information

System

is controlled by
shapes

is performed with

is used

to build
is associated

to

is related to

is used to build

provides

generates

generates

is aggregated into

shapes

is part of

starts / finishes

provides

Business Monitoring

Context-Aware

Event Processing

Event Sources

Fig. 3 Meta-model for context-aware dynamic event processing.

The context-aware dynamic event processing

algorithm, described in Fig. 4, is aimed to transform EPL

statement templates into executable EPL statements in a

particular business process. The outputs of the algorithm

can be: a) a semantically annotated EPL statement is

registered in a CEP engine or b) a semantically annotated

EPL statement is finished in the CEP engine.

In the algorithm, the ontology with the knowledge

of interest for the food logistics domain is retrieved and

loaded into the data structure, logistics_ontology[] (line

1). An infinite loop is started to constantly perform the

subsequent instructions (line 2). The context is read and

stored in the logistics_context[] (line 3). Reading the

context means gathering the information that describes

the situation of the entities of interest to be monitored,

including the retrieval events from the environment.

The next step is to update the knowledge in the

ontology (logistics_ontology[]) with the new information

gathered from context (logistics_context[]) (line 4);

updating may also generate new knowledge by inference

methods activated with the contextual knowledge. The

active situations are loaded into the data structure

active_situations[]by querying the ontology for active

situations (line 5). An active situation means that the

situation is occurring at the moment of executing the

algorithm.

IEICE TRANS. FUNDAMENTALS, VOL.XX-X, NO.X XXXX XXXX

5

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

For each active situation in the active_situations[]

list, its associated EPL statement name (line 7) and

corresponding action (line 8) are retrieved. If the action

to be taken is “start”, the EPL statement must be

semantically annotated and further registered into the

CEP engine (lines 10 to 15). The first step is to load the

template (line 10) and the parameters to be annotated in

the template (line 11). For each of parameter, the values

are queried (line 13) and annotated in the EPL statement

(line 14). When the EPL statement is semantically

annotated, it is registered in the CEP engine (line 15). If

the action to be taken is “finish”, the statement was

already running in the CEP engine and has to be stopped

(line 16).

4. Context-Aware Event Processing in Cold Chain

Logistics Environment

To illustrate context-aware event processing, cold chain

logistics is adopted as an example scenario. First, the

entities in ubiquitous logistics environment are

represented in ontology. Then, transformation of EPL

statement templates to executable EPL statements is

illustrated through the context-awareness based on the

ontology. Finally, how the EPL statements can be applied

in the cold chain logistics is exemplified with event-

driven rule processing.

4.1. Ontology in Cold Chain Logistics

In this example scenario, the situation of interest is the

“Product Shipment Activity” because the possible event

such as door lock and temperature can occur in that

activity. The classes and relationships in the ontology

designed for the scenario is shown in Fig. 5. In the

ontology, the “Product Shipment Activity” is a

specialized class of the “Warehousing Activity” class in

that the activity is also included in many kinds of

warehousing activities. In executing the logistics process,

the activity is scheduled to perform and it is also

assigned to vehicle for transportation. Those

representations are depicted in the relationships between

“Product Shipment Activity” class and other two classes,

“Scheduled Product Shipment Task” and “Vehicle”. In

addition, “Warehousing Activity” class is assumed to be

able to occur in “Atomic Location” and transport some

“Product” as illustrated in the relationships of

“Warehousing Activities”.

Fig. 5 Entities and relationships for the product shipment activity.

Fig. 6 Protégé screenshot for the DistributionTruckA individual.

1: logistics_ontology[] := get_ontology();

2: while TRUE do

3: logistics_context[] := read_context();

4: update_ontology(logistics_ontology[], logistics_context[]);

5: active_situations[] := ask_for_active_situations(logistics_ontology[]);

6: for each active_situation in active_situations[] do

7: epl_stmt_name := get_epl_stmt_name (active_situation);

8: action := get_action(active_situation);

9: if action = “start” then

10: epl_stmt_template := get_epl_stmt_template (active_situation);

11: template_parameters[] := get_template_parameters(epl_stmt_template);

12: for each parameter in template_parameters[] do

13: parameter_value := get_parameter_value(parameter);

14: annotate_epl_stmt(annotated_epl_stmt, parameter, parameter_value);

15: register_epl_stmt(epl_stmt_name, annotated_epl_stmt);

16: else unregister_epl_stmt(epl_stmt_name);

Fig. 4 Algorithm for context-aware dynamic event processing.

IEICE TRANS. INF. & SYST., VOL.Exx-D, NO.xx JANUARY 20XX

6

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

The initial configuration of the scenario was

defined by using Protégé [19]. The necessary individuals

for each class involved in the scenario were created; as

an example, the individual for the distribution truck and

its data and object properties are shown in Fig. 6.

4.2. Dynamic Generation of EPL Statements

To illustrate a situation where our approach can be of

benefit, we assume a refrigerated container in the truck.

The container has located temperature, humidity and

door lock sensors; it also has RFID readers that detect

the presence of RFID tags attached to products. Two

types of products can be loaded into the container, milk

and fish, whose environmental requirements inside the

container may vary.

In order to monitor the conditions for any product

inside the container, an EPL statement template is related

to a product type in a specific activity; the template

defined in Esper’s EPL [18] is shown in Fig. 7.

INSERT INTO SHIPAKERT

SELECT * FROM PATTERN [

 EVERY a=Door(state=open) -> (

 NOT Door(state=close) AND

(timer:interval(ctx:monitorInterval min) OR

TEMPMON(tempDiff>ctx:tempThreshold))

)]

Fig. 7 EPL statement template to monitor conditions in container.

The statement indicates to the CEP engine that a

SHIPALERT event must be created when the door of a

container has been open for ctx:monitorInterval minutes

or the temperature difference is more than

ctx:tempThreshold degrees while door is open.

ctx:monitorInterval and ctx:tempThreshold are filter

expressions; their specific values depend on the product

that is being loaded into the container (e.g. milk, fish). To

assign the appropriate values to ctx:monitorInterval and

ctx:tempThreshold, the context of the container indicates

what product is being loaded (as detected by the sensors)

and what are the appropriate values for its requirements.

In this way, when milk is being loaded, the EPL

statement expressions would be as shown in Fig. 8. On

the other hand, when fish is loaded, the EPL statement

expressions would be as shown in Fig. 9.

INSERT INTO SHIPAKERT

SELECT * FROM PATTERN [

 EVERY a=Door(state=open) -> (

 NOT Door(state=close) AND (timer:interval(3 min)

OR TEMPMON(tempDiff>5))

)]

Fig. 8 Executable EPL statement for milk.

INSERT INTO SHIPAKERT

SELECT * FROM PATTERN [

 EVERY a=Door(state=open) -> (

 NOT Door(state=close) AND (timer:interval(2 min)

OR TEMPMON(tempDiff>3))

)]

Fig. 9 Executable EPL statement for fish.

This example shows that the same EPL statement

template is configured dynamically according to the

context of the container.

The specific events and rules to handle these event

patterns and trigger specific business actions can be

specified by using event-driven rules in a rule engine. In

the example scenario of cold chain logistics environment,

the Event-Condition-Action (ECA) rule can be described

in Jess rule language [21]. The rule indicates that when a

product shipment activity is executing and a

SHIPALERT event is generated, a sendSMS action

should be executed; the meaning of this action can be

interpreted as the sending of a mobile phone message to

the operator whenever the conditions detected in the CEP

stage are satisfied [22].

(defrule SHIP_TEMP_ALERT

(and ?evt <- (SHIPALERT)

(Activity {name == ‘Product Shipment Activity’

&& state == ‘executing’}))

=> (assert (InvokeService (name ‘sendSMS’)

(to evt.containerID)))

Fig. 10 Event-driven Rules for Dynamic Event Processing [22].

4.3. Discussion

In practice, a third-party logistics generally transports

many kinds of food types such as meat, fish, and diary

food, and they also run many kinds of vehicles and

refrigerated storages in logistics process. In such

environment, the ubiquitous logistics devices generate a

variety of huge event streams including sensor data (e.g.

temperature, humidity, CO2), GPS, and RFID. If we do

not apply the approach of using EPL statement templates,

we have to describe a great number of event processing

rules considering many food types, vehicles, and

refrigerated storages. Moreover, if a new food type or

vehicle is added in the logistics environment, we have to

configure the corresponding rules in the system.

Contrarily, in the proposed method, the complicated

information of logistics components, such as food types,

vehicles, storages, and managers, are delegated to the

context-aware systems.

5. Prototype System

We introduce a prototype system to illustrate the

proposed context-ware event processing for ubiquitous

process management. The system was extended from the

IEICE TRANS. FUNDAMENTALS, VOL.XX-X, NO.X XXXX XXXX

7

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

event-driven ubiquitous flow management system, called

edUFlow [22].

Business Information Systems

Situations Knowledge Base Situations Matcher CEP Processing

Events Middleware

Broker

RFID Events

Queue

USN Events

Queue

Complex

Events

Queue

Ubiquitous

Sensor

Network

USN

Listener
RFID

System

Physical Events

Semantic

Engine

Context

Updater

EPL

Builder

CEP

Engine

Events

Adapter

Situations

Ontology

Business

Monitoring

Statements

Context

Monitoring

Statements

ERP SCM CRM

ORB SOAP RPC

Logical

Events

Queue

Heterogeneous Integration Services

Systems Integration

RFID

Listener

Fig. 11 System architecture for context-aware event processing.

The system architecture is drawn in Fig. 11. First of

all, event processing systems in the ubiquitous logistics

environment gather physical events from RFID and USN

located throughout the logistics environment. And,

Business Information Systems such as ERP, SCM, and

CRM also provide logical events, which are used to

understand business activities. To consolidate and

distribute physical and logical events it exists the Events

Middleware that is orchestrated by one or more brokers.

Brokers receive events from the WSN Listener, the RFID

Listener and Business Information Systems and allocate

them in special purpose queues: WSN Events Queue,

RFID Events Queue and Logical Events Queue,

respectively.

The CEP Processing is performed by a CEP engine;

it receives events, physical, logical and complex through

the Events Adapter, a process that interacts with the

Broker to get and send events from and to queues.

The reasoning function is performed in the

Situations Knowledge Base (SKB), built of the

Situations Ontology and Semantic Engine. The

Situations Ontology is a representation of the domain

knowledge, ubiquitous food logistics in this particular

case. It models the concepts of interest and relationships

that are necessary to detect situations and execute the

semantic annotation of EPL statements. The Semantic

Engine interacts with the Situations Ontology and allows

to infer new knowledge and to query semantic data.

Finally, the acting function is executed by the

Situations Matcher. Within the Situations Matcher, the

Context Updater gets the relevant events detected with

the Context Monitoring Statements in the CEP engine.

The Context Updater uses those events to make

assertions in the Semantic Engine. The EPL Builder

queries the Semantic Engine for the EPL Statement

Template, the EPL statement parameters and the specific

values for parameters. When constructed, the annotated

EPL statement is registered and started in the pool of

Business Monitoring Statements. On the other hand if the

requirement is to stop a statement, its name is retrieved

with the Semantic Engine and further stopped in the CEP

engine.

The EPL editor and CEP monitor have been

developed for the proposed framework. RFID and WSN

systems were respectively implemented using two

subsystems: Alien 9800 Development Kit and Ubee430-

AP-Kit. These two kits provide software libraries written

in Java that allow the transmission of sensor readings

data to the Events Middleware.

GlassFish Message Queue was also selected to

implement the Events Middleware to integrate the event

processing subsystems. There, a broker receives data

coming from sensors readings and stores each reading as

a message in specially designated queues, namely the

WSN Events Queue and the RFID Events Queue. The

broker also retrieves messages from RFID and WSN

queues when the CEP processing subsystem requests

them. Besides the RFID and WSN messages, the broker

also handles messages coming from the CEP Processing

subsystem storing and retrieving them in and from the

Complex Event Queue.

Fig. 12 User interface of executable EPL statement generation

In shown in Fig. 12, the module for the activation,

deactivation and visualization of the flows of events is

presented. The capture of complex events of the two

basic types, namely WSN and RFID, can be started or

stopped from the middleware’s queues and later

processed with the CEP engine. If the event processing

can be matched to the EPL statement templates based on

the context, the executable EPL statement is generated.

The executable EPL statements which have been

generated based on the EPL statement templates are

registered to the CEP engine for the CEP processing as

shown in Fig. 10. Finally, the CEP engine will monitor

the raw event pattern and detect the registered event

patterns in newly generated EPL statements.

IEICE TRANS. INF. & SYST., VOL.Exx-D, NO.xx JANUARY 20XX

8

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

6. Example Scenario

To illustrate our approach, we explain how the

generation of EPL statements would work in the delivery

process of a perishable product, ice cream. The scenario

takes place in the delivery zone in a retailer’s warehouse,

where jars of ice cream are dispatched from the container

attached to a truck. The case for monitoring this process

is that safety and quality of perishable goods have to be

guaranteed. The ubiquitous logistics environment is

configured as follows. The delivery zone in the retailer’s

warehouse is delimited by the interrogation zones of

RFID antennas and readers, so that when an RFID tag

attached to an object is read, it means that the object is

within the delivery zone. RFID tags are attached to: a)

the roof of delivery trucks and b) ice cream jars. RFID

antennas are located in strategic positions at the delivery

zone; there is one antenna at the entrance of the parking

zone (intended to read RFID tags attached to trucks) and

another one at the entrance of the warehouse building

(intended to read RFID tags attached to jars). The door of

the truck’s containers, where ice cream jars are delivered,

is locked with an electronic door lock. It is important to

note that prior to attaching RFID tags to objects,

complementary information is associated to them and

stored in Enterprise Information Systems. In the case of

trucks, plate, driver and supplier information is

associated to the RFID tag number; and in the case of ice

cream jars the EPC standard may be used, where

information as the serial number, category and

manufacturer is associated to the RFID tag id. In this

model, the ubiquitous logistics environment senses the

presence or absence of objects (trucks and jars) in the

delivery zone and also the state of the door lock, open or

closed. These environmental readings can be modeled as

three types of events, shown in Fig. 13.

EpcTagReading {

epc_code:String, antenna_id:Byte,

discovery_time:Datetime, last_seen_time:Datetime,

reader_id:String

}

VehicleTagReading {

 vehicle_tag_id:String, antenna_id:Byte,

 discovery_time:Datetime, last_seen_time:Datetime,

 reader_id:String

}

ContainerDoorEvent {

 vehicle_tag_id:String, event_type:String,

 event_timestamp:Datetime

}

Fig. 13 Data objects for event sources in cold chain logistics

The first event signifies that an ice cream jar has

been delivered; the second signifies that a vehicle has

entered the delivery zone and the third signifies an event

associated to the door lock, for example the opening or

closing of the door.

As previously explained in Section 3.3, we assume

that business policies shape how business processes and

its associated monitoring activities are designed and

implemented. In this particular example, the business

policy that drives the monitoring activity is related to

expired products: all perishable foods whose expiration

date is previous to current (system) date on delivery at a

warehouse have to be rejected. So, the monitoring

activity to implement that policy in the perishable

products delivery process consists in detecting the

products that have already expired or are going to expire

soon.

The ontology that we use to represent the above

mentioned knowledge is shown in Fig. 14. The

“perishable products delivery process” of ice cream is

controlled by the “check expiration monitor”. The tasks

to be performed by the monitor are defined in an EPL

statement template, which pertains to the Business

Monitoring Statements group in our framework. The

EPL statement that is appropriate for this case is shown

in Fig. 15.

Delivery truck

for loading

is ready

Perishable

products delivery

process

Ice cream
Check expiration

monitor

is controlled by

EPL statement

template

is used to

monitor

CTX:VEHICLE_ID

CTX:PRODUCT_DELIVERY

_INTERROGATION_ZONE

CTX:PRODUCT_SAFE

_EXPIRATION_TIME_WINDOW

CTX:PRODUCT_DISC_

TIME_LAG

has parameter

starts

Delivery

authorization

event

Truck arrival

at delivery zone

event

marks the beginning of

is performed with

arises when

has parameter has parameter

has parameter

EPL template

name

has attribute

arises when

has parameter

CTX:PROVIDER_ID

Fig. 14 Ontology for context-aware chain logistics

(1) INSERT INTO rejected_expired_products (epc_code,

discovery_time, provider_id)

(2) SELECT p.epc_code, p.discovery_time, CTX:PROVIDER_ID

(3) FROM PATTERN [

(4) d = ContainerDoorEvent (event_type = "OPEN"

 AND vehicle_tag_id = CTX:VEHICLE_ID) ->

(5) EVERY p = EpcTagReading(p.antenna_id =

CTX:PRODUCT_DELIVERY_INTERROGATION_ZONE)]

(6) WHERE (get_expiration_date (p.epc_code) <

get_system_date() OR

(7) get_expiration_date(p.epc_code)< get_system_date()

+ CTX:PRODUCT_SAFE_EXPIRATION_TIME_WINDOW)

(8) AND (p.discovery_time - d.event_timestamp) <

CTX:PRODUCT_DISC_TIME_LAG

Fig. 15. EPL statement template to monitor expiration dates of products

in a product delivery process.

IEICE TRANS. FUNDAMENTALS, VOL.XX-X, NO.X XXXX XXXX

9

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

This template is the basis for generating a stream of

products (rejected_expired_products) that were rejected

because they are already expired or are going to expire

soon (line 1). That stream is fed by a SELECT statement

(lines 2 to 10) that detects a pattern of events in which

the door of a container is opened (line 4) followed by

one or more readings of RFID tags attached to ice cream

jars (line 5), in the delivery zone. To detect which of

those products that cross the delivery zone have already

expired or will expire soon, two comparisons are made:

the first one verifies if the expiration date of the product

has already occurred (line 6) and the second one checks

if the expiration date will occur before a safe period (line

7). Additionally, it is checked that the time occurred

between the discovery time of the product and the door

opening does not exceed a certain amount of time (line

8). The EPL statement has associated five semantic

parameters: CTX:PROVIDER_ID, CTX:VEHICLE_ID,

CTX:PRODUCT_DELIVERY_INTERROGATION_ZO

NE, CTX:PRODUCT_ SAFE_EXPIRATION_TIME_

WINDOW and CTX:PRODUCT_DISC_TIME_LAG.

These values are to be annotated with particular values

determined by contextual information that is gathered

from several sources: the ontology itself, enterprise

information systems and events generated by sensors.

(1) SELECT v.vehicle_tag_id, v.provider_id,

a.timestamp

(2) FROM PATTERN [

(3) EVERY v = VehicleTagReading (antenna_id=123)

-> a = DeliveryAutorizationEvent

(4) WHERE timer:within(2 min)]

(5) WHERE v.vehicle_tag_id = a.vehicle_tag_id

Fig. 16. EPL statement to monitor contextual events.

(1) INSERT INTO rejected_expired_products (epc_code,

discovery_time, provider_id)

(2) SELECT p.epc_code, p.discovery_time, "12A8-Z789"

(3) FROM PATTERN [

(4) d = ContainerDoorEvent (event_type = "OPEN"

 AND vehicle_tag_id = "TR-589") ->

(5) EVERY p = EpcTagReading(p.antenna_id=123)]

(6) WHERE (get_expiration_date (p.epc_code) <

get_system_date() OR

(7) get_expiration_date(p.epc_code)<

get_system_date() + 10 days)

(8) AND (p.discovery_time - d.event_timestamp) < 5

min

Fig. 17. Executable EPL statement to monitor the expiration dates

of products in a product delivery process.

In our framework, the EPL statement template has

to be annotated and further started in a CEP Engine,

when the situation “Delivery truck for loading is ready”

of the ontology in Fig. 14 occurs. This situation becomes

active when two events occur: first, a truck arrives at the

delivery zone and second, an authorization is received

from an ERP system. These events are monitored with an

EPL statement intended to monitor context (the Context

Monitoring Statements group), as shown in Fig. 16.

This statement detects every VehicleTagReading

event that occurs within the delivery zone (read by

antenna with id equal to 123), followed by

DeliveryAutorizationEvent, with a difference of 2

minutes between them (lines 2 to 4). Additionally, the

vehicle detected must correspond to the vehicle

authorized (line 6). These two events can be then

asserted in the Semantic Engine, giving as a result the

readiness of the delivery truck for loading. This new

state drives the starting of the annotating of the EPL

statement, which retrieves the EPL statement template,

the template’s name, the associated action (in this case

“start”) and the contextual values. After annotating the

template, an executable EPL statement is generate as

presented in Fig. 17.

And finally, the last step in the process is to register

and start the generated EPL statement, shown in Fig. 17,

to perform the monitoring tasks in the process.

7. Conclusion

In this paper, the main approach to context-aware event

processing is the process of adding contextual values to

EPL statement templates for the purpose of adapting

them dynamically to the situation that occurs in a

particular moment based on the predefined ontology. To

realize the approach, we discussed the concepts,

algorithms, models and a framework to perform context-

aware complex event processing in ubiquitous logistics

environment. We also provided an example scenario to

show how we can apply the proposed method to cold

chain logistics.

The proposed method can support more precise and

automated monitoring tasks of business process by

dynamically adapting the values of EPL statements based

on the physical condition captured by RFID and sensors

and the ontology designed for various logistics

environment, as illustrated the presented example in

Section 6.

The future work of this research include as follows.

First, we can extend our approach to context-ware

complex event processing by applying it not only to the

values of EPL parameters, but also to the structure of

EPL clauses. Second, we can strengthen the robustness

of the proposed method by supporting the analysis

function of conflict detection and resolution of event-

driven rules [23, 24]. The issue is more significant as the

number of events and rules increases in practical

business environment.

Acknowledgement

This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education,

Science and Technology (No. 2012003505).

IEICE TRANS. INF. & SYST., VOL.Exx-D, NO.xx JANUARY 20XX

10

Published in IEICE Transactions on Information and Systems, Vol. 96-D, No. 5, May 2013, pp. 1053-1062.

References

[1] M. Kang and S. Kim, “A Study on the Military Logistics System

in Ubiquitous Environment”, Int. J. Mult. Ubiq. Eng., vol.1, no,1,

pp.1-4 , 2006.

[2] D.M. Lambert, J.R. Stock, and L.M. Ellram, Fundamentals of

Logistics Management, McGraw-Hill Book Co., Singapore, 1998.

[3] M. Weiser, “The Computer for the 21st Century”, Scientific

American, vol.265, no.3, pp.94-104, 1991.

[4] G. Yoo and E. Lee, “Self-Healing Methodology in Ubiquitous

Sensor Network”, Int. J. Adv. Sci. Tech., vol.3, pp.9-18, 2009.

[5] E. Bajic, “A Service-Based Methodology for RFID-Smart

Objects Interactions in Supply Chain”, Int. J. Mult. Ubiq. Eng.,

vol.4, no.3, pp.37-56, 2009.

[6] C. Heinrich, RFID and Beyond, Wiley Publishing, Inc.,

Indianapolis, 2005.

[7] M. Ju and S. Kim, “Logistic Services Using RFID and Mobile

Sensor Network”, Int. J. Fut. Gen. Comm. Netw., vol.1, no.2,

pp.25-29, 2008.

[8] V. Mattoli, B. Mazzolai, A. Mondini, S. Zampolli, and P. Dario,

“Flexible tag datalogger for food logistics”, Sensors and

Actuators A: Physical, vol.162, no.2, pp.316-323, 2010.

[9] I. Hwang and J. Baek, “Wireless Access Monitoring and Control

System based on Digital Door Lock”, IEEE Trans. on Cons.

Elec., vol.53, no.4, pp.1724-1730, 2007.

[10] J. Yoo and Y. Park, “An Intelligent Middleware Platform and

Framework for RFID Reverse Logistics”, Int. J. Fut. Gen. Comm.

Netw., vol.1, no.1, pp.75-82, 2008.

[11] D. Luckham, The Power of Events, Pearson Education Inc.,

Boston, 2002.

[12] S. Loke, Context-Aware Pervasive Systems, Auerbach

Publications, Boca Raton, 2007.

[13] T. Gua, H.K. Pung, D.Q. Zhang, “A service-oriented

middleware for building context-aware services”, J. Netw. Comp.

App., vol.28, pp.1-18, 2005.

[14] J. Sheng, W. Zou, L. Yang, B. Wang, “A RFID-based Context-

Aware Service Model”, Proc. Int’l Conf. IEEE TrustCom-

11/IEEE ICESS-11/FCST-11, 2011.

[15] C. Gao, J. Wei, C. Xu, S.C. Cheung, “Sequential Event Pattern

Based Design of Context-Aware Adaptive Application”, Int J

Softw. Infor., vol.4, no.4, pp. 419-436, 2010.

[16] J. Dunkel, “On Complex Event Processing for Sensor

Networks”, Proc. Int’l Symp. on Auto. Decentr. Syst., Athens,

Greece, 2009.

[17] M. Suntinger, H. Obweger, J. Schiefer, M.E. Gröller, “Event

Tunnel: Exploring Event-Driven Business Processes”, IEEE

Comp. Grap. App., vol.28, no.5, pp.46-55, 2008.

[18] N. Dindar, C. Balkesen, K. Kromwijk, N. Tatbul, “Event

Processing Support for Cross-Reality Environments”, IEEE Perv.

Comp., vol.8, no.3, pp.34-41, 2009.

[19] The Protégé Ontology Editor and Knowledge Acquisition

System. http://protege.stanford.edu/

[20] Esper Homepage. http://www.espertech.com/

[21] Jess Rule Engine Homepage. http://www.jessrules.com/

[22] P. Rosales and J.-Y. Jung, “Complex Sensor Event Processing

for Business Process Integration”, IEICE Trans. Comm., vol.93-

B, no.11, pp.2976-2979, 2010.

[23] K. Teymourian, “Enabling Knowledge-Based Complex Event

Processing”, Proc. VLDB, 2011.

[24] D Riemer, L. Stojanovic, N. Stojanovic, “Using Complex Event

Processing for Semantic Requests in Real-Time Social Media

Monitoring”, AAAI Technical Report WS-12-12, 2012.

Pablo Rosales Tejada received BS from the

Department of System Engineering at

Universidad de San Carlos de Guatemala,

Guatemala, in 2006. He also received MBA

from Universidad Mesoamericana,

Guatemala in 2008, and MS from Kyung

Hee University, Korea in 2011. He has been

a Business Intelligence consultant for more

than 5 years. He is currently an assistant professor in System

Engineering at Universidad de San Carlos de Guatemala,

Guatemala. His research interests include business intelligence,

business analytics, and systems engineering.

Jae-Yoon Jung received BS, MS, and PhD

from the Department of Industrial

Engineering at Seoul National University,

Seoul, Rep. of Korea, in 1999, 2001, and

2005, respectively. He is an assistant

professor in the Department of Industrial and

Management Systems Engineering at Kyung

Hee University, Seoul, Rep. of Korea. His

research interests include ubiquitous service computing, Internet

business, and business process management.

