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ABSTRACT 

In managing business processes, the process uncertainty and variability are significant factors causing difficulties 

in prediction and decision making, which evokes and augments the importance and need of process measures for 

systematic analysis. We propose an entropy-based process measure to quantify the uncertainty of business 

process models. The proposed measure enables capturing the dynamic behavior of processes, in contrast to 

previous work which focused on providing measures for the static aspect of process models. 
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1. Introduction 

A business process is a collection of tasks and decisions to produce products or services in an organization. 

The measurement of business processes has a great significance since a process does not only create value, but 

also costs. In recent years, many measures of process models have been devised to reflect or predict process 

characteristics such as understandability, reliability, usability, and maintainability [1]. A process model designed 

with the aid of these metrics as guiding principles is likely to be less error-prone, easier to understand, maintain, 

and manage, and more efficient [2]. 

Several process measures for complexity [3,4], density [5], coupling and cohesion [6] have been recently 

introduced to provide a quantitative basis for the design, development, and analysis of process models. In 

particular, most studies have addressed complexity measures. Higher complexity leads to more difficulty in 

understanding and interpreting process models. Mendling et al. [7] analyzed hundreds of SAP reference models 

to confirm that complexity seemed to be a key determinant for errors. Gonzalez et al. [1] and Muketha et al. [8] 

provide very good surveys of recent research done in this area.  
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In this paper, we focus on the uncertainty and variability of business processes. Uncertainty and variability are 

caused by events that force a system to deviate from a regular and predictable behavior [9]. In operational 

processes, reducing variability or uncertainty has been an important issue, since doing so enables the process to 

guarantee better predictability and managerial efficiency. On the contrary, systems with high variability and 

uncertainty have more difficulties in making more efficient planning and scheduling. In mathematical statistics, 

entropy is often used to measure uncertainty about the value of a random variable [10]. In a similar way, the 

concept of entropy can be applied to measure the uncertainty of execution scenarios in a process. See Section 2 

for details. 

In contrast to previous research emphasizing the static aspect of process models, in this paper, we propose an 

entropy-based measure which captures the dynamic behavior of processes. It enables experts to better understand 

the nature of processes at runtime. The proposed entropy-based process measure quantifies the uncertainty of 

executing business process models and the process uncertainty is defined in terms of the transition and execution 

of tasks. We provide explicit forms of measure for primitive control-flow patterns and illustrate it by a process 

model fractionated into separate blocks of primitive patterns. 

 

2. Entropy-based uncertainty measure 

A business process is a set of logically related tasks performed to achieve a defined business outcome [11]. 

The process has uncertainty because some parts of it are conditionally executed at runtime based on managers’ 

decisions or process data. While it is not possible to know for sure if a particular task will be executed, it is 

possible to associate a probabilistic model to conditional tasks by analyzing the past behavior of processes’ 

executions. In our research, we use the entropy measure to model the uncertainty associated with the execution 

(or not execution) of conditional tasks. The uncertainty becomes higher as the distribution over execution 

scenarios is more uniform. The larger number of scenarios leads to the higher uncertainty, when all scenarios 

have the same probability of occurring. These properties of process uncertainty can be reflected by the concept 

of entropy.  

The uncertainty of information is generally calculated by Shannon’s entropy [12]: 

𝐻(𝑋) = ∑ 𝑃(𝑥𝑖)𝑢(𝑥𝑖)
𝑛
𝑖=1 = −𝐾∑ 𝑃(𝑥𝑖) log2 𝑃(𝑥𝑖)

𝑛
𝑖=1   

where X is a discrete random variable taking possible states x1, x2, ..., xn with probabilities P(x1), P(x2), ..., 

P(xn), respectively (for 1≤i≤n, P(xi)≥0, ∑P(xi)=1). The entropy H(X) is the expectation of u(xi) which is xi’s 
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uncertainty. Shannon interpreted the amount of information by the entropy measure when K=1 (the constant K is 

merely the choice of measurement unit). Shannon’s entropy is a simple quantitative measure of uncertainty in a 

data set. The entropy increases, as the state distribution is more uniform.  

The intent of a process model is achieved through completing a set of process tasks in one of all possible 

execution scenarios. In this paper, we focus on the uncertainty of which scenario is executed to accomplish the 

intent of process model at each time. We define the execution scenario (ES) probability of a scenario as the 

probability that the specific one out of all possible scenarios is executed. The ES probability is obtained by 

repetitively multiplying the transition probabilities between two sequential tasks in the scenario. The process 

uncertainty increases, as the probability distribution over scenarios is more uniform. When all ES probabilities 

are same, the larger number of scenarios results in the higher uncertainty. This relationship between the process 

uncertainty and its transition probabilities can be formulated with Shannon’s entropy and it can be viewed as a 

measure of the uncertainty of process model. 

For illustrating how the concept of entropy can be applied to calculating the uncertainty of process models, 

consider a simple process model B consisting of task t0 proceeding to one of tasks t1, t2, and t3 in an XOR-split, 

where there exist three possible execution scenarios: t0t1, t0t2, and t0t3. The corresponding ES probabilities 

are P(t1t2)= 1/5, P(t1t3) =3/10, and P(t1t4)=1/2, respectively. In this process model B, the uncertainty of 

which scenario is executed is calculated using Shannon’s entropy as follows: 

𝑈(𝑩) = −∑ 𝑃(𝑡0 → 𝑡𝑖) log2 𝑃(𝑡0 → 𝑡𝑖)
3
𝑖=1 = −(

1

5
log2

1

5
+

3

10
log2

3

10
+

1

2
log2

1

2
) = 1.48, 

 

where U(B) denotes the uncertainty of process model B. The minimum value (=0) for the measure is attained 

with only one ES probability equal to 1 and the others equal to zero (e.g., P(t1t2)=1, P(t1t3)=0, P(t1t4)=0), 

which means that the process model is always executed in the specific scenario of task t0 proceeding to task t1 

with no uncertainty. The maximum value is attained with all equal ES probabilities (i.e., P(t1t2) =P(t1t3) 

=P(t1t4) =1/3), which maximize the uncertainty of which scenario is executed. ES probabilities can be 

estimated from the historical data of the process model and be updated with every new observation. 

A process with high entropy indicates that it is more difficult to correctly predict which conditional tasks will 

be called for execution. On the other hand, a process with low entropy indicates that some conditional tasks have 

a higher probability of being executed than others. As a result, the uncertainty of which tasks will be called for 

execution is lower. If process model A has higher entropy than process model B, then it is possible to predict 

with higher confidence and accuracy which conditional tasks will be executed in process model B. 
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3. Explicit forms of measure for process models 

This section provides the explicit forms of the uncertainty measure for five primitive control-flow patterns 

such as sequence, AND-split, OR-split, XOR-split, and loop. To describe the accurate behaviors of process 

models, Petri nets are used to represent them as shown in Fig. 1. A process model is a directed bipartite graph 

with two node types, tasks and places, which are depicted by rectangles and circles, respectively [6]. In the 

model, the state of a process is represented by the distribution of tokens, depicted by black dots. In a process 

model, a task is ready if each of its input places contains at least one token. A ready task can start its execution, 

and when the task starts, it consumes a token from each input place and produces a token for each output place. 

In this paper, we define a transition between two sequential tasks as the accomplished movement of tokens 

required to make the task that follows ready. The transition probability is obtained by simply multiplying all the 

probabilities of related token movements. If a place has only one output task, the transition probability to the 

following task is 1. However, if the place has more than one output task, the transition probabilities to the 

following tasks can vary between 0 and 1 according to the control-flow patterns of the process. 

Each process model under analysis can be simply expressed with only one control-flow pattern containing 

multiple process blocks at a certain level of resolution as shown in Fig. 1(a) and, at the next finer level of 

resolution, the process block may reduce to only one individual task or expand to another group of process sub-

blocks in one or more control-flow patterns as shown in Fig. 1(b). We assume that all process blocks are 

independently executed. 

 

Fig. 1. A process model in the sequence pattern: (a) expressed with unexpanded process blocks and (b) expressed 

with expanded process blocks. t1 and tN are individual tasks. 

 

The notations used for the explicit forms of uncertainty measure for process models are as follows: 

▪ B : process model under analysis, as a whole  

▪ N : total number of process blocks at a certain level of resolution where process model B can be expressed 

B2 BN
... tN

...t1 B2,2

B2,1

B2,N2

⁞

B2B1 BN

(a) (b)

B1 t3

B3
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as only one control-flow pattern containing multiple process blocks, as shown in Fig. 1(a)  

▪ M : total number of possible execution scenarios for the N process blocks in process model B  

▪ BSk and P(BSk): k
th execution scenario for the N process blocks in process model B and its ES probability 

▪ Bg : g
th process block in process model B, 1≤g≤N 

▪ P(Bg) : probability that the gth process block Bg is executed by all M possible execution scenarios in order 

to accomplish the intent of process model B, 1≤g≤N 

▪ Sg,i and sg,i: i
th execution scenario of process block Bg and its ES probability, 1≤i≤Vg 

▪ Rg,h and rg,h: transition between two sequential process blocks Bg and Bh and its transition probability 

▪ Ng : total number of process sub-blocks at a certain level of resolution where process block Bg can be 

expressed as only one control-flow pattern containing multiple process sub-blocks, as shown in Fig. 1(b) 

▪ Bg,j : j
th process sub-block in process block Bg, 1≤j≤Ng 

Each explicit form of the uncertainty measure given in Sections 3.1 to 3.4 can be divided into two components: 

expectation of execution-related uncertainties, represented by –∑ 𝑃(𝐵𝑆𝑘)log2𝑃(𝐵𝑆𝑘)
𝑀
𝑘=1 , and expectation of 

uncertainties within process blocks, represented by ∑ 𝑃(𝐵𝑔)𝑈(𝐵𝑔)
𝑁
𝑔=1 . Therefore, the general form of the 

uncertainty measure of process model B is 𝑈(𝑩) = −∑ 𝑃(𝐵𝑆𝑘)log2𝑃(𝐵𝑆𝑘)
𝑀
𝑘=1 + ∑ 𝑃(𝐵𝑔)𝑈(𝐵𝑔).

𝑁
𝑔=1   

 

3.1. Sequence  

The sequence block is a set of process blocks executed in sequence. Fig. 2(a) shows sequence block BSEQ with 

process blocks Bg (1≤g≤N). The explicit form of its uncertainty measure is 𝑈(𝐵SEQ) = ∑ 𝑈(𝐵𝑔)
𝑁
𝑔=1 . 

Proof. Suppose that sequence block BSEQ includes only two process blocks B1 and B2 (i.e. N=2). When process 

blocks B1 and B2 are sequentially and independently executed in scenarios S1,i and S2,j (1≤i≤V1 and 1≤j≤V2) 

with transitions R0,1 and R1,2, its corresponding Shannon’s entropy-based uncertainty is log2(r0,1s1,ir1,2s2,j)
-1. Note 

that  0 1 =  1 2 = 1     ∑  1 𝑖 = ∑  2  
  
 =1

  
 =1 = 1. Hereby, the uncertainty measure of sequence block BSEQ, 

defined as the expectation of uncertainties, is calculated as follows: 

𝑈(𝐵SEQ) = ∑ ∑ 𝑃(𝑅0 1)𝑃(𝑆1 𝑖)𝑃(𝑅1 2)𝑃(𝑆2  )
  
 =1 log2{𝑃(𝑅0 1)𝑃(𝑆1 𝑖)𝑃(𝑅1 2)𝑃(𝑆2  )}

−1  
𝑖=1   

                  = −{ 0 1 1 2log2( 0 1 1 2)} + { 0 1 1 2∑  1 𝑖log2( 1 𝑖)
−1  

𝑖=1 +  0 1 1 2∑  2  log2( 2  )
−1  

 =1 }  

                  = −∑ 𝑃(𝐵𝑆𝑘)log2𝑃(𝐵𝑆𝑘)
1
𝑘=1 + ∑ 𝑃(𝐵𝑔)𝑈(𝐵𝑔) = ∑ 𝑈(𝐵𝑔)

2
𝑔=1

2
𝑔=1   
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The derivation can be easily extended to a sequence block with more than two process blocks (i.e. N≥3).□ 

 

3.2. AND-split 

The AND-split block embraces two or more parallel branches all of which are executed concurrently after the 

preceding task. Fig. 2(b) shows AND-split block BAND with process blocks Bg (1≤g≤N). The explicit form of its 

uncertainty measure is 𝑈(𝐵AND) = ∑ 𝑈(𝐵𝑔)
𝑁
𝑔=1 . 

Proof. The AND-split block is equivalent to the sequence block in that all included process blocks are executed 

and the order of execution does not change the entropy. The proof follows directly from that of Section 3.1.□ 

 

Fig. 2. Five primitive patterns: (a) Sequence block BSEQ, (b) AND-split block BAND, (c) XOR-split block BXOR, 

(d) OR-split block BOR, and (e) Loop block BLOOP. 

 

3.3. XOR-split 

The XOR-split block embraces two or more branches only one of which is executed after the preceding task. 

Fig. 2(c) shows XOR-split block BXOR with process blocks Bg (1≤g≤N). The explicit form of its uncertainty 

measure is 𝑈(𝐵XOR) = −∑  0 𝑔 log2( 0 𝑔)
𝑁
𝑔=1 − ∑  0 𝑔 ∑  𝑔 𝑖 log2( 𝑔 𝑖)

 𝑔
𝑖=1

𝑁
𝑔=1 .  

Proof. When process block B1 is executed in scenario S1,i (1≤i≤V1) with transition R0,1, its corresponding 

Shannon’s entropy-based uncertainty is log2(r0,1s1)
-1. Note that ∑  0 𝑔

𝑁
𝑔=1 = 1      ∑  1 𝑖

  
𝑖=1 = 1. Hereby, the 

uncertainty measure of XOR-split block BXOR is calculated as follows: 

𝑈(𝐵XOR) = ∑ ∑  (𝑅0 𝑔) (𝑆𝑔 𝑖)
  
𝑖=1 log2{ (𝑅0 𝑔) (𝑆𝑔 𝑖)}

−1𝑁
𝑔=1   

BSEQ

B0 BN+1

B2

B1

BN

⁞

BAND

B0 BN+1

B2

B1

BN

⁞

BXOR

r0,N

r0,1

B0 B0

B2

B1

BN

⁞

B1*r0,1

1-r0,1

r0,N

1-r0,N

B0 B2N+1

BOR

BN+1

BN+2

B2N

B1

B2

BLOOP

r1,3
B0 B3

r1,2

(a)

(b)

(c) (e)

(d)

...B1 BN
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                  = −∑  0 𝑔 log2( 0 𝑔)
𝑁
𝑔=1 + ∑  0 𝑔 ∑  𝑔 𝑖 log2( 𝑔 𝑖)

−1 𝑔
𝑖=1

𝑁
𝑔=1   

         = −∑ 𝑃(𝐵𝑆𝑘)log2𝑃(𝐵𝑆𝑘)
𝑁
𝑘=1 + ∑ 𝑃(𝐵𝑔)𝑈(𝐵𝑔)

𝑁
𝑔=1 .□ 

 

3.4. OR-split  

The OR-split block embraces two or more branches each of which is decided to be executed or not 

concurrently and independently after the preceding task. Fig. 2(d) shows OR-split block BOR with process blocks 

Bg (1≤g≤N), dummy process blocks Bh (N +1≤h≤2N), and transitions between two sequential blocks. The 

dummy blocks are used to indicate that its corresponding process block is not executed. Note that U(Bh)=0 for N 

+1≤h≤2N. The explicit form of its uncertainty measure is 𝑈(𝐵OR) = −∑ { 0 𝑔 log2( 0 𝑔) + (1 −𝑁
𝑔=1

 0 𝑔)log2(1 −  0 𝑔) +  0 𝑔 ∑  𝑔 𝑖 log2( 𝑔 𝑖)
 𝑔
𝑖=1

}. 

Proof.  As shown in Fig. 2(d), for convenience, let Bg
* denote the gth logical block comprised of process block 

Bg, its dummy block BN+g, and transitions R0,g and R0,N+g. Note that  𝑁 𝑔 1 = 1 ∑  𝑔 𝑖
 𝑔
𝑖=1

= 1. When process 

blocks Bg and BN+g are exclusively executed in scenarios Sg,i and SN+g,j (1≤i≤V1 and j=1) with transitions R0,g and 

R0,N+g, the uncertainty measure of logical block Bg
* is calculated as a XOR-split block: 

𝑈(𝐵𝑔
∗) = − 0 𝑔 log2( 0 𝑔) − (1 −  0 𝑔)log2(1 −  0 𝑔) −  0 𝑔 ∑  𝑔 𝑖 log2( 𝑔 𝑖)

 𝑔
𝑖=1

  

             = −𝑃(𝐵𝑆𝑔)log2𝑃(𝐵𝑆𝑔) − 𝑃(𝐵𝑆𝑁 𝑔)log2𝑃(𝐵𝑆𝑁 𝑔) + 𝑃(𝐵𝑔)𝑈(𝐵𝑔) 

Hereby, the uncertainty measure of BOR is calculated as in an AND-split block with Bg
* (1≤g≤N):  

𝑈(𝐵OR) = ∑ 𝑈(𝐵𝑔
∗)𝑁

𝑔=1 = −∑ { 0 𝑔 log2( 0 𝑔) + (1 −  0 𝑔)log2(1 −  0 𝑔) +  0 𝑔 ∑  𝑔 𝑖 log2( 𝑔 𝑖)
 𝑔
𝑖=1

}𝑁
𝑔=1   

                = −∑ 𝑃(𝐵𝑆𝑘)log2𝑃(𝐵𝑆𝑘)
2𝑁
𝑘=1 +∑ 𝑃(𝐵𝑔)𝑈(𝐵𝑔)

2𝑁
𝑔=1 .□ 

 

3.5. Loop  

The loop block embraces process blocks which are executed repeatedly until satisfying a certain condition. 

Fig. 2(e) shows Loop block BLOOP with two process blocks Bg (1≤g≤2). The explicit form of its uncertainty 

measure is 𝑈(𝐵LOOP) = −{1 − ( 1 2)
𝐿
} {

𝑟   log (𝑟   )

𝑟  3
+ log2( 1 3)} + {

1−(𝑟   )
𝐿+ 

𝑟  3
}𝑈(𝐵1) + {

𝑟   −(𝑟   )
𝐿+ 

𝑟  3
} 𝑈(𝐵2). 

Proof.  Note that r0,1= r2,1=1 and r1,2+r1,3=1. All possible block-level execution scenarios of loop block BLOOP 

and corresponding ES probabilities are shown in Table 1. The kth block-level execution scenario BSk is equivalent 
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to a sequence block containing (k+1) process blocks of B1 and k process blocks of B2. Note that B0 and B3 are not 

included in BSk since those are not in the loop. Hence, the uncertainty measure of BSk is obtained by: 

𝑈(𝐵𝑆𝑘) = (𝑘 + 1) ∗ 𝑈(𝐵1) + 𝑘 ∗ 𝑈(𝐵2). 

Loop block BLOOP can be viewed as an XOR-split with L branches the transition probabilities of which are 

equal to the ES probabilities shown in Table 1. Note that ∑ 𝑃(𝐵𝑆𝑘)
𝐿
𝑘=0 = r1,3 +r1,2r1,3+…+(r1,2)

L-1r1,3+(r1,2)
L=1 

with r1,3=1- r1,2. Thus, calculating the uncertainty measure of loop block BLOOP can be written in terms of all 

possible block-level execution scenarios: 

𝑈(𝐵LOOP) = ∑ 𝑃(𝐵𝑆𝑘)log2
𝐿
𝑘=0 (𝑃(𝐵𝑆𝑘))

−1
+ ∑ 𝑃(𝐵𝑆𝑘)

𝐿
𝑘=0 𝑈(𝐵𝑆𝑘)  

The first term in the equation of U(BLOOP) is further expanded as follows: 

∑ 𝑃(𝐵𝑆𝑘)log2(𝑃(𝐵𝑆𝑘))
−1𝐿

𝑘=0 = ∑ {( 1 2)
𝑘
 1 3log2 (( 1 2)

𝑘
 1 3)

−1

}𝐿−1
𝑘=0 +( 1 2)

𝐿
log2 (( 1 2)

𝐿
)
−1

  

                                                         = − {1 − ( 1 2)
𝐿
} {

𝑟   log (𝑟   )

𝑟  3
+ log2( 1 3)}  

The second term in the equation of U(BLOOP) is further expanded as follows: 

∑ 𝑃(𝐵𝑆𝑘)
𝐿
𝑘=0 𝑈(𝐵𝑆𝑘) = ∑ [( 1 2)

𝑘
 1 3{(𝑘 + 1)𝑈(𝐵1) + 𝑘𝑈(𝐵2)}]

𝐿−1
𝑘=0 + ( 1 2)

𝐿
{(𝐿 + 1)𝑈(𝐵1) + 𝐿𝑈(𝐵2)}  

                                         = {
1−(𝑟   )

𝐿+ 

𝑟  3
}𝑈(𝐵1) + {

𝑟   −(𝑟   )
𝐿+ 

𝑟  3
}𝑈(𝐵2) = 𝑃(𝐵1)𝑈(𝐵1) + 𝑃(𝐵2)𝑈(𝐵2)  

Therefore, the explicit form of the uncertainty measure for BLOOP with two process blocks Bg (1≤g≤2) is: 

𝑈(𝐵LOOP) = −{1 − ( 1 2)
𝐿
} {

𝑟   log (𝑟   )

𝑟  3
+ log2( 1 3)} + {

1−(𝑟   )
𝐿+ 

𝑟  3
}𝑈(𝐵1) + {

𝑟   −(𝑟   )
𝐿+ 

𝑟  3
}𝑈(𝐵2)  

                    = −∑ 𝑷(𝑩𝑺𝒌)𝐥𝐨𝐠𝟐𝑷(𝑩𝑺𝒌)
𝑳
𝒌=𝟎 +∑ 𝑷(𝑩𝒈)𝑼(𝑩𝒈)

𝟐
𝒈=𝟏 .□ 

 

Table 1. Execution scenarios and ES probabilities of BLOOP 

No. Block-level execution scenarios of BLOOP ES probabilities of BLOOP 

0 

1 

 

L-1 

L 

B0‒ B1‒ B3   

B0‒ B1‒ B2‒ B1‒ B3  

⁞   

B0‒ B1‒ B2‒ B1‒  …‒ B1‒ B2‒ B1‒ B3  

B0‒ B1‒ B2‒ B1‒  …‒ B1‒ B2‒  B1‒ B2‒  B1‒ B3  

P(BS0)=r0,1r1,3= r1,3        

P(BS1)=r0,1r1,2r2,1r1,3= r1,2 r1,3 

⁞  

P(BSL-1)=r0,1r1,2r2,1 … r2,1 r1,2r2,1r1,3= (r1,2)
L-1r1,3 

P(BSL)=r0,1r1,2r2,1 … r2,1r1,2r2,1r1,2 r2,1= (r1,2)
L 

 

3.6. Uncertainty of process model comprised by tasks only 

As shown in Table 2, the explicit forms of the uncertainty measure U(B) given in Sections 3.1 to 3.5 reduce to 

ones for the corresponding control-flow pattern only, when each process block reduces to a task with its ES 

probability of 1 and its uncertainty measure of zero. 

Table 2. Explicit forms of the uncertainty measure for control-flow patterns  
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Control-flow pattern Explicit form of the uncertainty measure for control-flow pattern only 

Sequence      𝑈(𝐵SEQ) = 0 

AND-split      𝑈(𝐵AND) = 0 

XOR-slit 𝑈(𝐵XOR) = −∑  0 𝑔 log2( 0 𝑔)
𝑁
𝑔=1   

OR-split 𝑈(𝐵OR) = −∑ { 0 𝑔 log2( 0 𝑔) + (1 −  0 𝑔)log2(1 −  0 𝑔)}
𝑁
𝑔=1   

Loop 𝑈(𝐵LOOP) = − {1 − ( 1 2)
𝐿
} {

log (𝑟   )

𝑟  3
− log2( 1 3)}  

 

For comparing the uncertainties of control-flow patterns in terms of the structure only excluding the effect of 

transition probabilities, assume that all splitting points of each control flow pattern in Table 2 have the equal 

transition probabilities. That is, r0,g=1/N for XOR-split, r0,g=1/2 for OR-split, and r1,2= r1,3=1/2 for Loop. The 

sequence and AND-split control-flow have the uncertainty measure of zero since the execution order of tasks is 

known with no uncertainty. The loop control-flow converges to 1 as L increases. The uncertainty of the XOR-

split is minimized with the smallest number of branches (i.e. g=2) and increases as the number of branches 

increases. The OR-split always shows the higher uncertainty than the XOR-split at the same number of branches. 

 

4. Illustration I – How to apply the entropy measure?   

This section illustrates the uncertainty measure with a process model fractionated into separate blocks of 

primitive patterns. Fig. 3(a) shows a process model with three primitive control-flows and tasks 𝑡𝑖 (1 ≤ 𝑖 ≤ 8). 

The XOR-split has two branches with an equal transition probability and the loop has the recursive transition 

probability of 0.2 with no bounded number of iterations. The uncertainty measure of this process model is 

calculated by recursively implementing two steps: 1) identifying maximum-sized logical blocks consisting of 

tasks in only one primitive control-flow and 2) calculating the uncertainty measure of the identified logical 

blocks. The identified logical blocks are considered as tasks at the next iteration. 

 

Fig. 3. Logical block-based approach for calculating the uncertainty measure: (a) logical blocks at the first 

iteration, (b) logical blocks at the second iteration, and (c) logical blocks at the third iteration.  

 

At the first iteration, as shown in Fig. 3(a), B1 and B2, and B3 are identified as maximum-sized logical blocks 
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with only one sequence control-flow or only one loop control-flow. Note that 𝑈(𝑡𝑖) = 0 for 1 ≤ 𝑖 ≤ 8. The 

uncertainty measures of sequence blocks B1 and B2 are equal to 0. As for the loop, 𝑈(𝐵3) = limL→∞−{1 −

(0.2)𝐿} {
0.2log (0.2)

1−0.2
+ log2(0.8)} = 0.902. At the second iteration, as shown in Fig. 3(b), B4 and B5 are identified 

as maximum-sized logical blocks with only one XOR control-flow or only one sequence control-flow. 

𝑈(𝐵4) = −2 ∗ (0.5 log2(0.5)) = 1 with U(B1)= U(B2)=0. 𝑈(𝐵5) = 𝑈(𝐵3) + 𝑈(𝑡7) = 0.902. At the third 

iteration, as shown in Fig. 3(c), B6 is identified as a maximum-sized logical block with only one AND-split 

control-flow. 𝑈(𝐵6) = 𝑈(𝐵4) + 𝑈(𝐵5) = 1.902. Finally, the process model can be viewed as a sequence block 

with 𝑡1, B6, and 𝑡8. Hence, 𝑈(𝑩) = 𝑈(𝑡1) + 𝑈(𝐵6) + 𝑈(𝑡8) = 1.902. 

 

5. Illustration II – A healthcare use case   

Processes can coordinate and manage tens and even hundreds of tasks which require often expensive and 

scarce resources to be properly executed. In hospitals, for example, healthcare processes can manage several 

tasks which require specific and expensive resources that range from doctors, X-rays and CAT scan equipments, 

EKGs, ambulances, surgical rooms, digital records, etc. During the design of a process, experts associate with 

each task adequate roles and resources which are required for its execution. 

For example, consider two patients transported to an emergency room by ambulance. Patients A and B are 

suffering fracture and dyspnea (shortness of breath), respectively. Before their arrival, a manager schedules the 

assignment of resources for their checkup processes. The number of possibly required resources varies according 

to their symptoms. So does the certainty for the use of each resource. In assigning X-rays, EKGs, CTs, and MRIs 

for their checkup processes, the manager is fully convinced that an X-ray is required for patient A. However, 

there is no such resource for patient B, since the dyspnea can be caused by abnormalities in many organs such as 

the heart, lungs, and the brain. These two different uncertainties of checkup processes can be reflected and 

distinguished by our proposed measure. The manager has more difficulty in efficiently assigning limited 

resources, as the more checkup processes of high entropy are initiated. The entropy of the checkup process for 

patient B could be reduced by adding a task of reviewing his/her past history and finding out the frequent causes 

of his/her dyspnea. 

For healthcare institutions, knowing beforehand that a healthcare process model has low entropy (i.e. low 

uncertainty) enables the creation of more accurate assignment schedules for resources and makes possible a 
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better planning. Healthcare professionals, medical equipment, and physical facilities can be allocated ahead of 

time knowing that they will be indeed needed to provide an efficient and cost effective care to patients.  

 

6. Conclusion 

For assessing the predictability and managerial efficiency of process models, we propose an entropy-based 

measure to quantify the uncertainty of business process models. The proposed measure enables to estimate the 

process uncertainty and interpret it in terms of execution-related uncertainties and process block-related 

uncertainties. These types of measures can be used to guide business process designers and analysts in 

developing and improving processes to be more predictable, less complex, less prone to errors, and simpler to 

understand [3,13].  
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