
Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

An ECA-Based Coordination Framework for Ubiquitous Web Service

Devices

Jae-Yoon Junga, Jonghun Parkb, Seung-Kyun Hanb, and Kangchan Leec

aEindhoven University of Technology, Netherlands

bSeoul National University, Korea

cElectronics & Telecommunication Research Institute, Korea

Abstract

Emerging ubiquitous computing network is expected to consist of a variety of heterogeneous and distributed

devices. While web services technology is increasingly being considered as a promising solution to support the

inter-operability between such heterogeneous devices via well-defined protocol, currently there is no effective

framework reported in the literature that can address the problem of coordinating the web services-enabled

devices. This paper considers a ubiquitous computing environment that is comprised of active, autonomous

devices interacting with each other through web services, and presents an ECA (Event-Condition-Action)-based

framework for effective coordination of those devices. Specifically, we first present an XML-based language for

describing ECA rules that are embedded in web services-enabled devices. An ECA rule, when triggered by an

internal or external event to the device, can result in the invocation of appropriate web service in the system.

Subsequently, we consider the situation in which the rules are introduced and managed by multiple, independent

users, and propose effective mechanisms that can detect and resolve potential inconsistencies among the rules.

The presented ECA-based coordination approach is expected to facilitate seamless inter-operation among the

web services-enabled devices in the emerging ubiquitous computing environments.

Keywords

ECA rules, ubiquitous web services, device coordination, rule conflicts, conflict detection and resolution

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

1. Introduction

Ubiquitous computing is emerging to innovate on the quality of human life and the behavior of business

through the digital and technology convergence [44]. Today’s ubiquitous environments are increasingly

becoming heterogeneous and service rich domains, where a diversity of communication devices, such as laptop

computers, portable digital assistances, cellular phones, digital home appliances, automotive telematics, and

various sensors, are interconnected each other beyond different platforms and physical networks. In such

environments, web services technology must be an effective means for achieving inter-operability among the

communication devices just as it is becoming a de facto standard of integrating heterogeneous business

applications [32, 42]. Indeed, several ongoing efforts, including UPnP 2.0 [41] for home network, and OWSER

[36] for mobile services, and Microsoft’s invisible computing platform [34] for tiny devices, are attempting to

embed web services technology into various devices for the purpose of materializing pervasive home networks.

In the meantime, recently proposed web service standards, such as WS-Eventing [3] and WS-Addressing [8], are

accelerating the adaptability of web services technology into distributed service devices by supporting endpoint

descriptions and communication mechanisms among them, respectively.

Ubiquitous web services have largely ranged over three fundamental issues just like the web services stack.

The first issue is the service description and messaging protocols. The initial outstanding web services

specifications, WSDL, SOAP, and UDDI, are still the base standards in ubiquitous areas even though REST and

AJAX are new approaches to lightweight and asynchronous web services communications. The second is the

service discovery and awareness. The researches on semantic web and ontology-based reasoning, as well as the

quality of service (QoS) protocols, are actively progressing for the purpose of pervasive and autonomous

computing [11, 21]. The last issue of ubiquitous web services is the service coordination technology, which we

intend to deal with in this paper. The service coordination technology was considered a significant part to

provide users with advanced services in ubiquitous computing environments [45, 31]. In the service-oriented

architecture (SOA) of business area, business process standard languages, such as WS-BPEL [1] and WS-CDL

[28], have enabled the orchestration and choreography of web services [38]. They facilitated to coordinate

application services of internal systems and business partners according to their business logics or trading

contracts. In the service-oriented architecture, the centralized process enactment engines play a role of

interpreting the process descriptions, transiting the states of the business cases, and maintaining long-lived

transactions.

However, such process enactment techniques have several difficulties in directly adopting them to the

ubiquitous environments. Since many ubiquitous service devices assume mobility, they may frequently join or

leave the virtual network. The previous service coordination techniques do not embrace the dynamic

connectivity for mobile communication devices and the process descriptions use the service binding to other

service providers. Moreover, the rather heavy enactment engine for the long-lived transaction cannot be

embedded in ubiquitous devices that may not have so sufficient computing capacities as business applications.

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

As a result, the ubiquitous devices require more dynamic, lightweight and decentralized coordination mechanism

in mobile communication network. Motivated by this, in this paper, a decentralized rule-based service

coordination framework is proposed for web services-enabled devices in ubiquitous computing environments.

Our proposed framework of ubiquitous service coordination adopted an Event-Condition-Action (ECA)

rule-based approach. The ECA rules have been originally presented in the database community in order to

provide traditional database systems with the capability of event-driven, instantaneous response [4, 18]. After

that, since the ECA rules offer the systems a means of the concise and distinct descriptions of reactive behaviors,

ECA rule management has been adopted in a variety of application fields, and currently it is recognized as one of

effective coordination techniques for carrying out distributed coordination [5, 7, 15].

In this paper, we first present an XML language, named WS-ECA (Web Services-ECA), which describes

ECA rules that define reactive behaviors of various web services-enabled devices, as well as service interactions

among the devices. The ECA rules are embedded into the service devices and then triggered by internal events of

the device or external events from others. The triggered rules, when their condition parts are satisfied, will be

activated to execute their actions. The event parts of the proposed language adopt four types of primitive events

(time, service, internal and external events) and four operations (disjunction, conjunction, sequence, and

negation). Specially, service events are defined to catch the point of invoking specific services and finishing the

services, and external events are exploited to response on event notifications sent from external devices.

The mechanism of WS-ECA rules support two ways to service interaction: one is service invocation, and the

other is event notification. Service invocation is the general concept of the previous web services technique of

using the request / response mechanism. On the other hand, event notification is a means of the event-driven

service interaction technique, and in this paper we assume the publish / subscribe mechanism based on the WS-

Eventing standard. Since event-driven interaction technique is considered more loosely-coupled and reactive

than service invocation technique, event-driven architecture is emerging to compensate with service-oriented

architecture in which the service activation is rather passive [13, 24, 33]. Furthermore, the publish / subscribe

mechanism of WS-Eventing standards is effective in ubiquitous environments where an event of a device may

affect many unknown devices. In our proposed mechanism, two approaches to service interaction are

complementary so that service invocation can be used to request public services and event notification to inform

other devices of the occurrences of the interesting events.

Subsequently, the paper looks into the situation that WS-ECA rules are dynamically added to and removed

from the devices by multiple users. In that case, several rules which have been stored in different devices at

different time may cause some inconsistency among them. To detect the inconsistency among multiple rules and

resolve the potential conflicts, an effective mechanism is proposed in this paper. For this purpose, we adopt the

notion of service constraints, which represent a set of actions of service invocations that are not allowed to be

made simultaneously. For example, two services of turning on and off an audio device should not be performed

at the same time. Such mutual exclusion requirements can be modeled as service constraints. That is, the service

constraints are considered as the means of deciding the rule conflicts in the service environment which consists

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

of a variety of services.

Our approach to conflict detection and resolution in ubiquitous service environments is differentiated from

epoch-based approaches in [10, 27]. The previous techniques to conflict resolution of ECA rules assumed the

time granularity, called an epoch, and they are based on time period in which the triggering events in the set

occur simultaneously. The approach is meaningful in the long-running environments, like policy description

languages (PDL), however, ubiquitous environments require service devices to react more instantly than their

assumptions. In our approach, the rules that are considered to check conflicts are ones that have possibility of

being triggered simultaneously in the same situation (i.e. events and condition). To clear that, some properties of

rule sets are defined in this paper. After that, using those properties, service conflicts are defined and adopted in

the framework.

In the mechanism for ubiquitous service environments, service conflicts are categorized into static and

dynamic ones depending on the time when the potential conflicts are checked and resolved. The static conflicts

are identified when a new rule is added to the system, and a rule cannot be registered if it causes the conflict with

any of the existing rules. On the other hand, the dynamic conflicts are detected and resolved during run-time by

utilizing some prescribed rules that can settle the potential conflicts.

The proposed framework for coordinating ubiquitous service devices has been developed to address the

characteristics of ubiquitous computing environment considered in the paper as follows:

 Active service invocation: The proposed framework not only supports the traditional passive web service

invocation model, but also the active invocation model in which the web services are triggered upon the

occurrences of internal and external events.

 Lightweight implementation: Contrary to the modeling languages such as WS-BPEL [1] and WS-CDL [28]

that focus on the stateful, long-lived business processes, the proposed framework attempts to support

stateless interactions to provide the capability of spontaneous reaction of service devices.

 Decentralized coordination: The rules governing the behavior of devices are decentralized across the

network and executed independently by individual devices. In addition, coordination is carried out by

means of publishing and subscribing web service event messages.

The paper is organized as follows. We first discuss related work on event-driven rule management in Section

2. The proposed framework for ECA rule-based management of web service devices is presented in Section 3,

and then the structure and elements of the WS-ECA language are presented in Section 4. Subsequently, the

conflict detection and resolution mechanisms for decentralized ECA rule processing are described in detail in

Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

2.1 Ubiquitous Web Services

The advent of ubiquitous technologies is urging to innovatively upgrade the quality of human life. To realize

the ideal, a lot of ubiquitous computing projects, such as Oxygen [35], Smart Dust [26], and Smart-Its [23], have

shown the broad potentials of ubiquitous computing. For instance, the Oxygen project aimed at pervasive,

human-centered computing, which implies that in the future the ubiquitous technology will get along with

humans just like oxygen any time and any place. The project is composed of five base technologies - device,

network, software, perceptual, and user technologies. Specially, user technologies includes automation and

collaboration technologies to facilitate device controls in user-centered networks and spontaneous

communication between device to device, device to human, and human to human. The collaboration

technologies are considered as a trial of ubiquitous service coordination by converging a variety of

communication devices. This is also the main purpose of our framework proposed in this paper. More

specifically, the aim of our research is the realization of ubiquitous service coordination by adopting active rules

that can interact among distributed service devices and activate each other via standardized eventing messages.

Web services technology is the most effective means for achieving inter-operability among heterogeneous

systems, furthermore, it is also considered as a promising communication protocol in ubiquitous computing

networks [11, 39]. The ongoing work, such as Microsoft’s invisible computing project [34], UPnP 2.0 device

architecture [41], and OMA Web Services Enabler Release (OWSER) [35], shows substantial approaches to

ubiquitous device communication based on web services technology. They assume the web services-enabled

devices that can run across a diversity of mobile and wireless platforms. Microsoft’s invisible computing

platform attempts to realize seamless computing world for small devices by implementing web services on a

chip of customer smart devices. UPnP (Univeral Plug and Play) is a distributed, open network architecture where

devices are connected directly each other at home, office, and public spaces, and the UPnP version 2.0 was

released by adopting a broad web services technology. The mobile web services working group of OMA (Open

Mobile Alliance) has published the OWSER specification to define necessary infrastructure for offering web

services in wireless network and device environment. Based on HTTP protocol and web technologies, they are

anticipated to employ various web services technologies including service discovery, QoS policy, authentication,

as well as service description and invocation. Those issues focus on the development of service description and

communication protocols by which communication devices can interact in wireless and mobile network, while

our framework concentrates on the effective coordination in such a wireless and mobile device environments.

The previous projects have provisioned the potential and usability of web services technology in ubiquitous

environments. In this research, we assume that web services-enabled devices will increasingly spread out like

those ubiquitous web services projects. On the basis of the web services technology, this research attempts to

present the decentralized rule-based service coordination framework and the service conflict detection and

resolution mechanism for ubiquitous web services-enabled devices.

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

2.2 Distributed Event-Driven Rules

Event-driven rules were introduced to provide rather passive traditional database systems with active

functionality, for example, integrity enforcement and view materialization [12, 37]. Many research groups

proposed active database systems, including SAMOS [22], Sentinel [12], DEVICE [4], EXACT [19], and

HiPAC [18]. In such systems, triggering events are usually selected among data manipulating operations and

transaction commands [37]. After that, event-driven rule management has been adopted for a variety of rule-

based applications, like expert systems [4], workflow systems [9], collaborating agents [6, 27], and middleware

[15].

Although event-driven rule management was mainly considered in centralized systems, recently it started to

be applied to distributed and parallel database systems owing to the advantages of distinct and comprehensible

rule descriptions [15, 43]. Vlahavas and Bassiliades summarized the important issues of parallel rule processing

including condition matching and rule execution in expert systems and knoweldge base systems. The active rule

management are recently adopted in broad distributed system area. Cilia and Buchmann [15] adopted active

rules to describe business rules in heterogeneous e-business environments. The ECA rule can be a good

alternative for rapid chaining business rules. Facca et al. [20] took an ECA based approach to develop adaptive

web applications, and Kantere and Tsois [27] proposed an ECA rule management method for the data

management in P2P network. Policy-based management is also an area where ECA rules, called the policy

description languages (PDL), were adopted for distributed system coordination [10, 30]. For the policy-based

framework, Shankar et al. [40] suggested ECA-P with post-conditions, which is the state of a system after

processing the rule. They addressed weak points of previous ECA rules and also proposed the mechanism of

static and dynamic conflict detection and resoultion for ubiquitous computing environments. However, their

centralized approach to distributed application coordination has limitation in applying the mechanism to

ubiquitous computing environments, mainly due to the properties of device capacities, communication overhead,

adaptability to the mobility, and private resource management. Moreover, policy-based languages assuming the

time granularity at run-time do not allow the ubiquitous devices to react on the instant events immediately. In

this research, we have attempted decentralized, adaptive, and lightweight ECA rule processing mechanism for

ubiquitous service devices by means of web services eventing technology.

There are several recent researches on event-based service computing using web services technology.

SCXML (State Chart XML) specification [2] provides a means by which a control mechanism can be described

by use of distributed finite state machines. Yet, it focuses on the behavioral description of an individual device

rather than the mechanism consisting of multiple devices. In addition, recently proposed specifications, such as

WS-Eventing and WS-Addressing are also accelerating the implementation of service-oriented ubiquitous

computing. WS-Addressing [8] offers a promising way of the endpoint descriptions of service partners for

synchronous and asynchronous communications. On the basis of the specification, WS-Eventing [3] provides the

messaging protocols for the publish / subscribe mechanism among web service applications. Event issues are

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

subscribed by the protocols, and the event notifications are delivered on SOAP messaging. The content of the

notifications can be described without restrictions for a specific application. The proposal can be used to develop

an extended protocol to support event-driven communication mechanism via web services technology. In our

research, the WS-Eventing mechanism was adopted as the means of event notification to external services. When

a new ECA rule is registered to a device, if the rule contains new external event in the event part (or any new

event notification in the action part), the device will subscribe the event to the external event source (or create

the new event publication). The WS-Eventing standards provide the message set for the publish / subscribe

mechanism on the basis of web services technology, which includes renewing, state checking, and faults

messages, as well as subscription and unsubscription ones.

Meanwhile, multiple rule processing may cause unexpected results especially in distributed parallel rule

systems. Several authors have reported significant results on managing conflicts among the ECA rules. Chomicki

et al. [14] and Shankar et al. [40] presented logic-based approaches to handling rule conflicts. However, since

they assume the time granularity at run-time, their approaches to rule conflict detection and resolution are not so

effective in ubiquitous environments as in policy-based management. They do not deal with quite instant

response on the triggering events, and furthermore they may result in some distortion in case that two significant

events that occurred with the small time gap are decided to cause a service conflict. On the other hand, in our

proposed mechanism, only the rules that may be triggered by the same event are checked at design-time. Besides,

the potential rules that may cause any conflict are marked at the design-time, and they are then checked again at

run-time. The mechanism is effective in that it can reduce the conflict checking time and network overhead in

run-time, and also acceptable to ubiquitous scenarios. In other words, we defined the properties of ECA rules

sets and the categorization of rule conflicts to address the characteristics of ubiquitous service devices, and we

presented the mechanism that can effectively handle the conflicts.

3. WS-ECA Rules Management for Ubiquitous Service Devices

In the proposed framework, service devices are surrounded by a lot of event sources and service providers,

which provide event notifications and public web services, respectively, on the basis of web services

technology.The service devices are assumed to interact each other through the events generated via publish /

subscribe mechanism and to invoke web services via request / response mechanism.

Following the structure of the traditional ECA rules, the proposed language for rule descriptions, named

WS-ECA, consists of events, conditions, and actions [25]. The event is a notification message that can be one of

four primitive event types, namely (i) internal event if it is generated by a device itself, (ii) external event if it is

delivered from other devices, (iii) time event that occurs after certain time has elapsed, and (iv) service event that

is generated at the point of invoking a service of a local device. The condition is a boolean expression that must

be satisfied for some action of a device to occur. It is defined by use of event variables contained in an event

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

message or device variables maintained by a device. Finally, the action represents an instruction carried out by a

device, which includes primitive actions such as web service invocation and event generation.

Device

Device

WS-ECA Rules

Actions

Invoke extService

Invoke intService

Generate extEvent

Generate intEvent

Events

Service events

Time events

Internal events

External events

Variables

Event variables

Device variables

ECA Rule

Event

Condition

Action

WS-ECA Rules

Services

event notification

service invocation

WS-ECA RulesWS-ECA Rules

WS-ECA Rules

Services

WS-ECA RulesWS-ECA Rules

Web service

providers

Event sources

event notification

service
invocation

Figure 1. The structure of WS-ECA rules

Figure 1 shows the proposed structure of WS-ECA rules. There are two types of interactions performed by a

device: one is the service invocation which is carried out by sending a SOAP message to an external web service

provider, and the other is event notification which is transferred via WS-Eventing protocol. WS-Eventing

specification defines a publish / subscribe messaging protocol for delivering subscription, notification, and fault

messages to implement an event-driven interactions based on web services. Service invocation is used to request

a well-defined service to the static service provider, while event notification is done to publish an event to

multiple subscribers, which may have already subscribed or be going to subscribe the interested event in the

future. The latter is more loosely-coupled and dynamic so that it is proper to mobile devices and it is also

efficient to send an occurrence to multiple devices.

Furthermore, our framework introduces a global rule manager (GRM) for the purpose of robust and

effective decentralized rule processing. GRM complements the shortcoming of decentralized service

coordination by checking potential conflicts among the multiple rules at design-time and offering resolution

mechanism at run-time. The decentralized devices maintain a set of WS-ECA rules defined by users, and activate

the rules in response to the triggering events at run-time. On the other hand, the GRM is responsible for

analyzing the consistency of new rules at design-time, and then for resolving -rule conflicts at run-time. For

instance, a personal computer can play a role of the GRM in the home network while a variety of home

appliances are service devices that interact each other.

The proposed architecture for processing WS-ECA rules between the service devices and the GRM is shown

in Figure 2. In the figure, the procedures, (1) to (5), are performed at design-time in order to verify WS-ECA

rules and register them to devices. When a user requests the local rule manager of a service device to register a

new rule, the rule verifier of GRM consults two rule conflict detectors, namely the static rule conflict detector

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

and the dynamic rule conflict detector, to check the rule (indicated as (3) and (4) in Figure 2). While the static

rule conflict detector is responsible for checking inconsistencies of the new rule with the existing rules, the

dynamic rule conflict detector examines any potential conflict at run-time and requires the user to resolve the

conflict if it turns out that a conflict may occur during run-time. Only the rules that complete the verification are

allowed to be registered to the device, and the rules that can lead to a conflict at run-time are marked by the

dynamic rule conflict detector. Detailed algorithms used by these detectors will be presented in Section 5.

Service

constraints

Resolution

rules

ECA

rules

Rule

engine

Composite
event

detector

Condition

evaluator

Action

executor

Global

rule storage

Design-time

rule verifier

Static

conflict

detector

Dynamic

conflict

detector

Dynamic

conflict

resolver

Run-time

rule verifier

Event notifications

Local rule

manager
(1) register

ECA rules

Service Device

Global Rule Manager

(5) store rules

(2) verify rules (c) resolve dynamic conflicts

Service invocation

Event publication

(external events)

Temporal event generator

Internal

events

temporal events

(3) SC

detection

(4) DC

detection

(a)

(b)

(f)

(d) DC

checking

(e) DC

resolution

Figure 2. Architecture for WS-ECA rule processing

On the other hand, (a) to (f) in Figure 2 represent the run-time procedures carried out for processing the

registered rules and resolving dynamic rule conflicts. The composite event detector embedded in a device waits

for an event that can be either internal or external to the device, and then checks if the condition of the triggered

rule is satisfied. When the condition is satisfied and the rule has no mark for potential dynamic conflicts, the

corresponding action is executed immediately. Otherwise, the rule with a mark is checked by the dynamic

conflict detector to see whether or not the conflict is imminent for a given state. If it is, the dynamic conflict

resolver coordinates the devices with the conflicting rules by use of the predefined resolution rules. The resulting

actions will be free from run-time conflicts.

4. WS-ECA: An ECA Rule Description Language for Web Service Devices

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

This section describes the XML schema of the proposed WS-ECA in detail. WS-ECA rules allow the web

services-enabled devices to interact each other via event-based interactions. In particular, WS-ECA has been

designed so that it can support (i) event passing by which certain events to be forwarded or broadcast to target

devices, (ii) temporal reaction that allows different actions to be performed according to the occurrence times of

the same event, and (iii) rule chaining where complex rules can be decomposed into several simpler rules.

<ECARule name=“xs:NCName” targetNampespace=“xs:anyURI”

xmlns=“http://di.snu.ac.kr/2005/eca/”

xmlns:xs=“http://www.w3.org/2001/XMLSchema” >

<variables>? <variable ... />+ </variables>

<events> event+ </events>

<actions> action+ </actions>

<rules>

<rule name=“xs:NCName”>+

<event name=“xs:QName”/>

<condition expression=“XPath Expression”/>

<action name=“xs:QName”/>

</rule>

</rules>

<ECARule>

Figure 3. The overall WS-ECA schema

Figure 3 shows the overall XML schema of WS-ECA. WS-ECA consists of a series of definitions for

variables, events, and actions from which rules are constructed after specifying conditions. Furthermore, it

supports the primitive events and actions as well as the composite ones for distributed coordination of ubiquitous

service devices. In what follows, we describe each element in detail.

4.1 Event

An event is an incident that triggers a rule. It is categorized into four primitive events, namely internal event,

external event, time event, and service event. Internal event is generated by the internal system components of a

device, and it is defined to recognize the state change of a device or to trigger other rules. External event is

generated from a remote publishing device and transmitted to a subscriber device via WS-Eventing protocol.

Time event occurs when the timer of a device reaches some specific point in time. It is further classified into

three types: absolute, periodic, and relative. The time event of absolute type occurs once whereas the event of

periodic type occurs periodically. The time event of relative type is defined in relation with some other event by

use of ‘before’ and ‘after’ operators. Finally, service event is specified in reference to a specific service

invocation action defined for a device. It can be one of two types: before and after. The service event of before

(after, respectively) type is generated before (after, respectively) the specified service of a device starts (finishes,

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

respectively).

Not only the primitive events introduced above, WS-ECA supports specification of a composite event based

on them by use of the following logical operators:

 disjunction (e1∨e2∨…∨en): The composite event of type “OR” has more than one sub-events, and it

requires that at least one of the sub-events must occur during some specific time interval.

 conjunction (e1∧e2∧…∧en): The composite event of type “AND” has more than one sub-events, and it

requires that all of the sub-events must occur during some specific time interval.

 serialization (e1;e2;…;en): The composite event of type “SEQ” has more than one sub-events, and it requires

that all of the sub-events must occur sequentially during some specific time interval.

 negation (￢e): The composite event of type “NOT” has only one sub-event, and it requires that the sub-

event must not occur during some specific time interval. The event can be used only in another composite

event of conjunction or serialization.

<events>

<timeEvent type=“once” name=“xs:NCName”> xs:dateTime </timeEvent>

<timeEvent type=“periodic” name=“xs:NCName” unit=“xs:duration”>

xs:dateTime </timeEvent>

<timeEvent type=“relative” name=“xs:NCName” baseEvent=“xs:NCName”

interval=“xs:duration”/>

<intEvent name=“xs:NCName”/>

<extEvent name=“xs:NCName” eventID=“xs:anyURI”/>

<svcEvent type=“before” name=“xs:NCName” service=“xs:QName”/>

<svcEvent type=“after” name=“xs:NCName” service=“xs:QName”/>

<compositeEvent type=“OR” name=“xs:NCName” TTL=“xs:duration”>

event+ </compositeEvent>

<compositeEvent type=“AND” name=“xs:NCName” TTL=“xs:duration”>

 event+ </compositeEvent>

<compositeEvent type=“SEQ” name=“xs:NCName” TTL=“xs:duration”>

 event+ </compositeEvent>

<compositeEvent type=“NOT” name=“xs:NCName” TTL=“xs:duration”>

event+ </compositeEvent>

</events>

Figure 4. Event schema of WS-ECA.

Figure 4 shows the event schema defined in WS-ECA for specifying the primitive events as well as

composite events. The time interval necessary for a composite event is denoted as TTL. We remark that event

composition can be done recursively to represent complex event structures.

4.2 Condition

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

The condition of WS-ECA rules is a boolean statement that must be satisfied in order to activate the rule. It

is described in terms of an XPath expression [16], and the expression in a condition may refer to values from the

event definition and use the variables defined in a WS-ECA document.

<variables>?

 <variable name=“xs:NCName” deviceVar=“xs:QName”?

eventVar=“eca:getVariable(event QName, path PathExpr)”? />+

</variables>

Figure 5. Variable schema of WS-ECA.

Table 1. Extension functions to XPath's built-in functions

Functions return type return value

eca:getVariable(event QName, path PathExpr) xs:any Specific value from an event variable

eca:getDateTime(event QName) xs:dateTime Date and time information

The syntax for the variables is presented in Figure 5. Variables may refer to specific elements of an event

defined in WS-ECA rules (called event variables) or they may be used to represent a state of a device (called

device variables). They can be also used to express the conditions or to assign necessary input data for actions

such as service invocations and event generation. We define two extension functions to assign the value to a

variable as shown in Table 1. The first function extracts a specific value from an event variable, and the second

returns the date and time information.

4.3 Action

The action part of the WS-ECA contains the instruction that is executed when a triggered rule is activated.

The role of action parts include processing the user's ultimate service by service invocation, triggering another

rules by internal event creation, and interacting with other devices by event publication. A primitive action can

be one of three types: (i) invokeService (service) that invokes an internal or external service, (ii) createExtEvent

(event) that generates an external event and publishes it to subscribed devices, and (iii) createIntEvent (event)

that generates an internal event and triggers other rules in the device. An invokeService action supports the

request / reply mechanism while a createExtEvent action does the publish / subscribe mechanism in the device

communications. On the other hand, a createIntEvent action is utilzed in chaining several rules to describe more

complicated service logics.

Contrary to the event part, the action part supports only one kind of composite action. The conjunctive

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

action is defined by using more than one primitive action. A conjunctiive action (a1∧a2∧…∧an) requires all

sub-actions to be executed. Figure 6 shows the proposed schema for the action element. The conjunctive

expression of the action part was introduced in order to reduce the labor to describe duplicatively several rules

with the same event and condition parts. On the other hand, disjunctive expression of multiple primitive actions

may cause some ambiguity because of the priorities among the sub-actions and sequence of their executions.

However, the conditional disjunction of several actions can be express in separated rules that have the different

condition parts. Furthermore, we do not consider sequential composite actions in WS-ECA schema since they

can be defined by chaining a series of WS-ECA rules.

<actions>

<invoke name=“xs:NCName” service=“xs:QName”> xs:any </invoke>

<createIntEvent name=“xs:NCName” intEvent=“xs:NCName”> xs:any </createIntEvent>

<createExtEvent name=“xs:NCName” extEvent=“xs:anyURI”> xs:any </createExtEvent>

<compositeAction name=“xs:NCName” operator=“AND”> action+ </compositeAction>

</actions>

Figure 6. Action schema of WS-ECA.

4.4 Example

As a motivating example, we consider the following scenario, “morning cook service”, illustrated in Figure

7: A user set the get-up time to 7:00 AM on the alarm clock before sleeping. In the next morning, the clock

informs the rice cooker of ‘20 minutes before get-up’. The cooker starts to cook, and if rice is not enough, it

alerts to the user at his/her get-up time. When the cooking is completed, the cooker informs the coffee maker,

and the coffee maker will start to prepare a morning coffee after 10 minutes.

extEvent(20min before ‘get-up’)

get-up time=7:00AM

extEvent(‘get-up’)

cook()
intEvent(out_of_rice)

if rice is not enough

alert()

after intEvent(out_of_rice)

if cooking is completed

extEvent(cooking_completion)

timeEvent(10min after cooking_completion & get-up)

invokeService(makeCoffee())

svcEvent(before cook())

svcEvent(after cook())

extEvent(get-up)

extEvent(20min before ‘get-up’)

get-up time=7:00AM

extEvent(‘get-up’)

cook()
intEvent(out_of_rice)

if rice is not enough

alert()

after intEvent(out_of_rice)

if cooking is completed

extEvent(cooking_completion)

timeEvent(10min after cooking_completion & get-up)

invokeService(makeCoffee())

svcEvent(before cook())

svcEvent(after cook())

extEvent(get-up)

Figure 7. Morning cook service example

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

The rules described above can be presented as shown in Figure 8. For the alarm-clock, two time events are

periodically generated, and the rules are provided to check if it is not a holiday. Each rule, when the condition is

satisfied, will execute an action that publishes an external event to the subscribing devices, namely the rice-

cooker and the coffee-maker. As for the rice-cooker, the first rule is to invoke the cook service when it receives

the alarm of ‘20min before get-up’. The next two rules of the rice-cooker, one for generating an event before the

cook service and the other for generating an event after the cook service, may respectively generate an internal

event ‘out_of_rice’ and external event ‘cooking_completion’, depending on the condition. The last rule of the

rice-cooker, which is triggered by a composite event enabled when the external event ‘alarm’ and the internal

event ‘out_of_rice’ are received sequentially within an hour, will execute an alert service if the condition is

satisfied. Finally, the rule defined for the coffee-maker will require the makeCoffee service to be started 10

minutes after it receives a composite event that is enabled when two external events ‘cooking_completion’ and

‘alarm” are received in order within 30 minutes.

Alarm-Clock

on timeEvent(20min before getting up)

if it is not holiday

do createExtEvent(alarm(contents=‘20min before get-up’))

on timeEvent(at 7:00AM every day)

if it is not holiday

do createExtEvent(alarm(contents=‘get-up’))

Rice-Cooker

on extEvent(alarm)

if alarm.contents=‘20min before get-up’

do invokeService(cook())

on svcEvent(before cook())

if rice is not enough

do createIntEvent(out_of_rice)

on svcEvent(after cook())

if cooking is succeeded.

do createExtEvent(cooking_completion)

on compositeEvent(intEvent(out_of_rice) after extEvent(alarm) within 1hr)

if alarm.contents=‘get-up’

do invokeService(alert(“out of rice”))

Coffee-Maker

on timeEvent(10min after compositeEvent(extEvent(cooking-completion) and extEvent(alarm) within 30min))

if alarm.contents=‘get-up’

do invokeService(makeCoffee())

Figure 8. ECA rule example of morning cooking service

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

Having introduced the motivating example, we proceed to specify the rules in terms of the proposed WS-

ECA language. First, the events for the alarm clock are defined by using the time events of periodic and relative

types as follows. Note that the periodic time event ‘get-up-time’ occurs every morning, while the relative time

event ‘before-get-up-time’ occurs in reference to ‘get-up-time’. To describe the temporal situation, the unit and

interval attributes of the timeEvent elements are expressed in duration of XPath specification [16]. That is,

unit=“P1D” of the periodic time event means that it occurs ‘every day’, and interval=“-PT20M” of the relative

time event means that it occurs ‘20 minutes before’ the base event.

<events>
<timeEvent type=“periodic” name=“get-up-time” unit=“P1D”> 7:00 AM </timeEvent>

<timeEvent type=“relative” name=“before-get-up-time”

baseEvent=“get-up-time” interval=“-PT20M”/>

</events>

Next, the events for the rice cooker show the usage of other event types. The before and after service events

defined for the cooking service are introduced, and the internal and external services are declared so that they

can be used in the following composite event, ‘get-up-after-out-of-rice’ which will be triggered when the

external event ‘alarm’ is followed by the internal event ‘cooking’ within 1 hour (i.e. TTL=“PT1H”).

<events>
<svcEvent type=“before” name=“before-cooking” service=“rc:cook”/>

<svcEvent type=“after” name=“after-cooking” service=“rc:cook”/>

<intEvent name=“cooking”/>

<extEvent name=“alarm” eventID=“...”/>

<compositeEvent type=“SEQ” name=“get-up-after-out-of-rice” TTL=“PT1H”>

<event name=“cooking”/><event name=“alarm”/>

</compositeEvent>

</events>

The actions defined below for the rice cooker contain three types of primitive actions, including

createIntEvent, createExtEvent, and invokeService. The ‘start-cooking’ and ‘detect-out-of-rice’ actions

respectively generate two internal events, ‘cooking’ and ‘out-of-rice’, which will be used to chain with other

rules in the WS-ECA specification. The ‘complete-cooking’ action generates an external event with a URI that

will be published to all subscribed external devices. Finally, the ‘invoke-cooking’ and ‘alert-out-of-rice’ actions

will respectively invoke internal and external services based on the WSDL document with namespace ‘rc:’. A

complete specification of WS-ECA rules for the example presented in this section is provided in Appendix.

<actions>

 <createIntEvent name="start-cooking" intEvent="cooking"/>

 <createIntEvent name="detect-out-of-rice" intEvent="out-of-rice"/>

 <createExtEvent name="complete-cooking"

 extEvent="http://di.snu.ac.kr/event/rice-cooker/cooking-completion"/>

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

 <invoke name="invoke-cooking" service="rc:cook"/>

 <invoke name="alert-out-of-rice" service="rc:alert">

 <rc:contents>out of rice</rc:contents>

 </invoke>

</actions>

5. Conflict Detection and Resolution of ECA Rules

We assume that WS-ECA rules can be defined by multiple users and registered to distributed devices. As a

result, some rules may have discrepancies with each other and they may cause conflicts when triggered and

executed in a distributed manner at run-time. In this section, we present a framework for conflict detection and

resolution of WS-ECA rules implemented in distributed devices.

We first introduce the notion of a service constraint, which represents a set of service invocation actions that

are not allowed to occur at the same time. For example, an event that leads to both turning on the radio and

turning it off is not permitted, and turning on a heater while an air conditioner is working may not be desired by

a user. An event is not allowed if it can result in the execution of actions that belong to a service constraint, and

we say that a set of WS-ECA rules has a conflict if some of the rules triggered by an event can lead to violation

of the service constraints.

In addition, we categorize the WS-ECA rule conflicts into two types according to the time when they are

resolved. The first type is a static conflict that is examined at design-time to determine if there is a set of rules

that violate service constraints. Once such rules are found, they cannot be registered together to the systems and

they must be modified to avoid the service conflicts. The second is a dynamic conflict which is judged at run-

time to see if there is a set of rules enabled coincidentally that may lead to the conflicts against the service

constraints although no logical contradiction was identified at design-time. In case that some rules with a

dynamic conflict are intended to register, Global Rule Manager (GRM) announces when the conflict will occur

and what service constraints they will violate. The rules with a dynamic conflict will be allowed to be registered

only after supplementing manually the corresponding resolution rules that can settle the dynamic conflicts at run-

time. The resolution rules , which are also defined in WS-ECA rules, are triggered when any dynamic rule occurs

at run-time. The description of the resolution rules will be introduced in detail in Section 5.3.

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

Create ECA rules

Static Conflict

(SC) ?

DC marked?

Modify rules

No

Yes

Wait for events

Event Determine rules to be triggered

Register rules to devices

Dynamic Conflict

(DC) ?

No

Yes

Design-time

Run-time

Activated rules exist?
No

Yes

No

Add DC resolution rules

DC occurs?

No

Yes

Execute actions

(and monitor execution)

Yes

Resolve DC

DC resolution

successful?

Notify users

No

Yes

Global Rule MgrService Device

Mark DC to rules

Register DC resolution rules

Figure 9. Framework for ECA rule conflict management

Figure 9 illustrates the overall framework for conflict detection and resolution in consideration for two types

of WS-ECA rule conflicts. The proposed framework is composed of two phases of conflict management, namely

the design-time conflict detection and run-time conflict detection and resolution. At the design-time phase, the

rules created by a user are forwarded to GRM, which then checks if each rule causes any static conflict by

comparing it with those registered already to devices. In case that any static conflict is detected, the user will be

notified of the detailed conflict and requested to modify the rule to remove the conflict.

When no static conflict is identified, GRM subsequently checks if the rule can cause a dynamic conflict at

run-time. If any potential dynamic conflict is detected, the user is notified of the service conflict (i.e., the service

actions involved and the corresponding service constraints) and the conflict details (i.e., a set of events and

conditions). In this case, the user must supply appropriate dynamic conflict resolution rules that can arrange the

conflict situation at run-time. Only after registering these resolution rules to GRM, the new rule can be registered

to a service device with a mark which indicates the rule may cause a dynamic conflict at run-time. The other

rules involved in the dynamic conflict also need to be marked.

At run-time, the rule processor embedded in a service device waits for a triggering event. When a rule is

triggered, it is checked whether or not the rule is marked with a dynamic conflict. If no marking is associated

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

with the rule, its actions will be executed immediately. Otherwise, the device needs to consult with GRM to see

if a dynamic conflict is imminent. In case that no dynamic conflict is identified, the actions defined for the rule

are executed. Otherwise, GRM sends the appropriate action instructions to the devices involved in the conflict

through looking up the dynamic conflict resolution rules supplied at design-time.

5.1 Basic Concepts

In this section, we present formal semantics and properties of the proposed WS-ECA rules and provide

necessary definitions on which the algorithms for conflict detection and resolution presented in Section 5.2 and

Section 5.2 are based. First, we formally define the WS-ECA normalized rule set.

Definition 1 (Normalized rule set). A normalized rule set, RSWS, is a finite set of WS-ECA rules, R = (ER, CR,

AR), where ER, CR, and AR respectively represent the sets of events, conditions, and actions defined as follows.

1. ER = {e | e = e1;...;en, where ei = etime, eint, eext, or esvc, i = 1, …, n}

Event set ER consists of the disjunction of one or more serializations of events, where the serialization is

expressed as e1;...;en. An event ei is one of the following types: time event etime, internal event eint, external event

eext, and service event esvc.

2. CR = {c | c = c1 ∧ ...∧ cm , and cj = r1 θ r2, j = 1, …, m}

Condition set CR consists of the disjunction of zero or more conjunctions of condition predicates. Each

conjunction is expressed as c1 ∧ ...∧ cm, the condition predicate cj is expressed as r1 θ r2, where θ is an

operator from the set {=, ≠, <, ≤, >, ≥}, and ri, i = 1, 2, is a constant, an event variable, or a device variable.

3. AR = {a | a = asvc, aint, or aext }

Action set AR consists of the conjunction of one or more primitive actions, which can be invokeService asvc(svc),

createIntEvent aint(eint), or createExtEvent aext(eext).

RSWS represents the set of all WS-ECA rules defined for all devices in the system in a normalized form. The

condition set bases the formalism on the work presented by Chomicki et al. [14] and extends it to allow both the

conjunctions and the disjunctions of condition predicates in order to conform to WS-ECA language. The action

set expresses the conjunction of the primitive actions which are required for execution when the rule is activated.

Considering that WS-ECA supports conjunction for modeling a composite action, the action parts written in WS-

ECA can be equivalently translated into the subset of AR. As for the event set of RSWS, the following Lemma

establishes that any composite event defined in WS-ECA by use of four logical operators (disjunction,

conjunction, serialization, and negation presented in Section 4) can be transformed to a subset of ER. Therefore,

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

any WS-ECA rule can be equivalently described in terms of the normalized rule set.

Lemma 1. Any valid composite event defined in terms of WS-ECA can be equivalently translated to the subset of

event set ER of normalized rule set RSWS.

Proof. A composite event is defined by use of four operators, disjunction ∨, conjunction ∧, serialization ; ,

and negation ￢ , and it satisfies the following properties:

(i) e1;(e2;e3) = (e1;e2);e3

(ii) e1;(e2∧e3) = (e1;e2)∧(e1;e3)

(iii) e1;(e2∨e3) = (e1;e2)∨(e1;e3)

(iv) (e1∨e2)∧e3 = (e1∧e3)∨(e1∧e3)

(v) e1∧e2 = (e1 ; e2)∨(e2 ; e1)

From the properties (i), (ii), and (iii), any valid composite event expression in WS-ECA can be transformed into

the equivalent conjunctions and disjunctions of serializations. Subsequently, conjunctions can be re-written as

disjunctions and serializations by using the properties (iv) and (v), resulting in the disjunction of serializations as

defined in ER.

Next, we present a series of definitions for the purpose of development of the rule conflict detection

algorithms in the next section.

Definition 2 (Event dominance). Let ei and ej
 be two serializations of events. ei is said to be dominant over ej

(represented as ei→Eej) if the occurrence of ei guarantees the occurrence ej. That is, ei→Eej, if ei
 =ei

1;...;e
i
n, and

ej= ei
a;...; e

i
s;...; e

i
t;...;e

i
m (1 ≤ a < s < t < m ≤ n).

Definition 3 (Concurrability). Let RS be a normalized rule set with two or more rules, and efinal be a primitive

event. RS is said to be concurrable for a final event efinal if all rules in RS are triggered at the same time when

efinal occurs. That is, RS is concurrable for efinal if ∀Ri ∈ RS, ∃ei (= ei
1;...;e

i
n)∈ ERi, such that ei

n = efinal.

Definition 4 (Co-triggerability). Let RS be a normalized rule set with two or more rules, and etrig be a primitive

or composite event. RS is said to be co-triggerable for the triggering event etrig if RS is concurrable for the final

event of etrig and etrig triggers all the rules in RS. That is, RS is co-triggerable for etrig, where etrig (=

etrig
1;...;e

trig
n) ∈ ERt, Rt ∈ RS if ∀Ri ∈ RS (i ≠ t), ∃ei (= ei

1;...;e
i
m) ∈ ERi, such that ei

m = etrig
n and

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

etrig→Eei.

Event dominance is defined to analyze the relationship among serializations of events. For example, for two

serializations of events ea = e1;e2;e3;e4;e5 and eb = e2;e4, the occurrence of ea can guarantee that of eb, therefore ea

is a dominant event over eb. Furthermore, from the definition of event dominance, we can infer the event

equivalence between two events that if ei = ej, ei→Eej and ej→Eei. That is, two equivalent events are dominant

over each other. Event dominance is used to identify the rules that can be triggered together by an event. When a

normalized rule set is concurrable, all rules in the set have a serialization event with the same final event efinal. If

efinal occurs after all the preceding events have occurred, all rules in the set will be triggered simultaneously.

Therefore, it follows that if some rules in a concurrable rule set have service actions violating any service

constraints, it may cause rule conflicts. On the other hand, if a normalized rule set is co-triggerable, all rules in

the set have a serialization event that has the same final primitive event and also has the same dominant event

etrig, which is also an event of a rule in the set.

Note that, the rules in a co-triggerable rule set that have actions against service constraints necessarily lead

to conflicts when the event etrig happens and the required conditions are satisfied at run-time, and therefore they

should not be allowed to be registered at design-time. However, the rules in a concurrable rule set that have

actions against service constraints do not always result in a conflict when the event efinal occurs at run-time, since

the preceding events of some rules may not have occurred. Hence, these rules should be checked at run-time to

see if they actually lead to a conflict.

The rules triggered at the same time may have different conditions that need to be met, making some rules

with potential conflicts actually result in conflicts or not depending on the condition. The next two definitions

further characterize the potential conflicts in view of the conditions defined for a normalized rule set.

Definition 5 (Compatibility). Let RS be a normalized rule set with two or more rules. RS is called compatible

if the conditions in RS can be satisfied simultaneously. That is, RS is compatible if c1 ∧ ... ∧ cm ≠ false,

where ci ∈ CRi, Ri ∈ RS (1 ≤ i ≤ m and CRi ≠ φ). Otherwise, RS is called incompatible.

Definition 6 (Co-satisfiability). Let RS be a normalized rule set with two or more rules, and csat be a condition

of a rule in RS. RS is called co-satisfiable for csat if csat can satisfy all rules in RS. That is, RS is co-satisfiable

for csat, where csat (= csat
1 ∧ ... ∧ csat

m) ∈ CRs and Rs ∈ RS, if ∀Ri ∈ RS (i ≠ s and CRi ≠ φ), ∃ci∈

CRi such that csat = ci ∧ cany, where cany is either a true condition or conjunction of any csat
k (1 ≤ k ≤ m).

If a normalized rule set is compatible, it means that it is possible for the rules in the set to be satisfied

simultaneously in some case, whereas if the rule set is incompatible, all the rules in the set cannot be satisfied

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

simultaneously in any case. On the other hand, if a normalized rule set is co-satisfiable, a rule in the set has the

condition csat that can also satisfy all the other rules in the set which have the same condition as csat or less

constrained conditions than csat, including a null condition (i.e., true condition). A co-satisfiable rule set is

compatible since there always exists a valid condition csat = c1 ∧ ... ∧ cm ≠ false, where ci ∈ CRi, Ri ∈

RS, and 1 ≤ i ≤ m.

Example 1. Consider a normalized rule R0 whose condition is an empty set, which means true condition. R0 is

compatible with any other rule since the true condition can be satisfied simultaneously with any other conditions.

In addition, R0 is also co-satisfiable with other rules because conditions of the other rules can satisfy the true

condition of the rule R0, (i.e., conditions of the other rules become csat in this case). As another example, consider

three rules R1, R2, and R3, such that CR1 = {c1, c2}, CR2 = {c1 ∧ c3}, and CR3 = {￢c3}. Out of all combinations

of these, the only co-satisfiable rule set is {R1, R2} for csat = c1 ∧ c3, and the compatible rule sets are {R1, R2}

and {R1, R3}, while the incompatible rule sets are {R2, R3} and {R1, R2, R3} due to the fact that (c1 ∧ c3) ∧ (￢

c3) = false.

5.2 Rule Conflict Detection

Service constraints are defined as conjunctions of two or more service actions. The constraints are stored in

GRM, and they are used as criteria for judging service conflicts. In the following two definitions, we formally

define the service constraints and rule conflicts.

Definition 7 (Service constraints). Service constraints ACWS is a power set of the service action set such that

AC = { a1, ..., an | a1 ∧ ... ∧ an are not allowed to be activated simultaneously and ai = asvc, i = 1, ..., n} ∈

ACWS.

Definition 8 (Rule conflict). Let RStrig be a normalized rule set of which the rules are triggered on the

occurrence of a primitive event. It is said that RStrig has a rule conflict if some of their service actions are

contained in one of the elements of ACWS.

The rules can be triggered directly or indirectly. We say that a rule is directly triggered on the occurrence of

a primitive event when its event specification has one or more event serializations whose final event is the

primitive event. On the other hand, a rule is said to be indirectly triggered if it is triggered by the generated

events from createIntEvent or createExtEvent on the occurrence of a primitive event. In what follows, we

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

elaborate more on the two types of rule conflicts and then present algorithms for detecting conflicts.

5.2.1 Static Conflict Detection

A normalized rule set is said to have a static conflict if there exists a situation in which triggering rules

causes a service conflict. Depending on whether the rules with potential conflicts are triggered directly or

indirectly by an event, the static conflict is further divided into two types, namely absolute conflict and chained

conflict. First, the absolute conflict is defined as follows.

Definition 9 (Absolute conflict). Let RStrig be a co-triggerable and co-satisfiable set of normalized rules. It is

said that RStrig has an absolute conflict if the rules have service actions that violate a service constraint AC of

ACWS. Formally, a co-triggerable and co-satisfiable set RStrig has an absolute conflict if ∃AC ∈ ACWS such

that AC ⊂ { asvc | asvc ∈ ARi, Ri ∈ RStrig }.

In the WS-ECA language, there are two primitive actions, createExtEvent and createIntEvent, that respectively

generate an event to trigger other rules in an external device and internal device. The rules indirectly triggered by

such an event generation action may also cause a service conflict with each other or with directly triggered rules.

This type of conflict is called chained conflict which is formally defined in the following definition.

Definition 10 (Chained conflict). Let RStrig’ be a co-triggerable and co-satisfiable set of normalized rules

without absolute conflict, and RSchain be a set of normalized rules that are co-satisfiable with RStrig and can be

triggered by an event generated from a rule of RStrig’ or from another rule of RSchain. It is said that RStrig’∪

RSchain has a chained conflict if the rules in RStrig’∪RSchain have service actions violating a service constraint.

Specifically, RStrig’∪RSchain has a chained conflict if ∃AC ∈ ACWS, such that AC ⊂ { asvc | asvc ∈ ARi, Ri

∈ RStrig’∪RSchain }.

From the above definitions of absolute and chained conflicts, it follows that a normalized rule set with an

absolute or chained conflict necessarily has a static conflict since the co-triggerability and co-satisfiability of the

rule set implies the existence of the triggering event etrig and the satisfiable condition csat.

Example 2. An example of static conflict is illustrated in the rule triggering graph of Figure 10, where all rules

are co-triggerable for the event e4;e1, which is a dominant event over e1. The table shows three parts of each rule.

Note that the event set is disjunction of serialized events while the action set is conjunction of primitive actions.

For example, rule R2 can be triggered by any event of e1 and e5, and it requires to activate both actions asvc
1

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

and aint(e2). In the diagram, directly triggered rule set {R1, R2}, which is co-satisfiable for the condition c1 ∧

c3, has an absolute conflict, since they allow the actions against the service constraint AC1. Furthermore, the

directly or indirectly triggered rule set {R1, R3, R4}, which is co-satisfiable for the condition c1 ∧ c3, makes a

chained conflict against AC2, while the indirectly triggered rule set {R5, R6}, which is co-satisfiable for the

condition c1, also results in a chained conflict against AC3.

{asvc
6}{}{e3}R6

{asvc
5}{c1}{e3, e6}R5

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
6}{}{e3}R6

{asvc
5}{c1}{e3, e6}R5

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
1 , a

svc
3 , a

svc
4}AC2

{asvc
5 , a

svc
6}AC3

{asvc
1 , a

svc
2}AC1

action constraintsACWS

{asvc
1 , a

svc
3 , a

svc
4}AC2

{asvc
5 , a

svc
6}AC3

{asvc
1 , a

svc
2}AC1

action constraintsACWS

R2

R4

R6

e1

R3

R1

absolute conflict

R5

chained conflict

e2

e3

e4;e1

conflict

dominant

rule

trigger
chained conflict

Figure 10. Absolute and chained conflict in a rule triggering graph

In the proposed framework, GRM detects static conflicts of rules by considering the other existing rules in

all devices of the ubiquitous system when a new rule needs to be registered to a service device. Figure 11 shows

the proposed algorithm for static conflict detection.

Input: A new rule Rnew, a normalized rule set RSWS, a service constraints set ACWS, a conditional action set cAWS

Output: A static conflict set RCstatic, where RCstatic:={ (e, AC, RSstatic) | triggering event e, service constraint AC,

and conflicting rule set RSstatic}

Algorithm static_conflict_detection(in(Rnew, RSWS, ACWS), out(RCstatic))

1: RCstatic:={};

2: cARnew := makeCondActs(Rnew); // make a conditional action set of the new rule

3: for each e∈ERnew do

4: MDE(e) := findMDE(e); // find the most dominant ones of the co-triggering events of e

5: if MDE(e)=φ then checkConflict(e, cARnew); // if there is no co-triggering event of e

6: else

7: for each edom∈MDE(e) do

8: cA(edom)=cA(edom)∪cARnew;

9: checkConflict(edom, cA(edom));

10: end for

11: end if

12:end for

13:if RCstatic=φ then updateCondActs(ERnew);

14:return RCstatic;

Function makeCondActs(Rnew)

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

cA={};

for each a∈ARnew do

if a=asvc(svc) then cA = cA∪{(a, CRnew)};

else if a=aint(etrig) || a=aext(etrig) then cA = cA∪{(at, Ct∧CRnew)| (at, Ct)∈cA(etrig)};

end for

return cA;

Function checkConflict(e, cA)

for each AC∈ACWS do

if AC⊂{a | (a, C)∈cA} then

cAconflict:={(a, C)∈cA | a∈ AC};

RSstatic:={ R∈RSWS | (a, C)∈cAconflict and a∈AR};

if checkCoSatisfiability(cAconflict)=true then RCstatic:= RCstatic∪{(e, AC, RSstatic)};

end if

end for

return RCstatic;

Figure 11. Algorithm static_conflict_detection

To start the algorithm static_conflict_detection, a new rule Rnew is given with a normalized rules set RSWS, a

service constraint set ACWS, and a conditional action set cAWS, which is updated for every rule insertion. The

output of the algorithm is a static rule conflict set RCstatic. First, the algorithm constructs the conditional action

set cA from the new rule by function makeCondActs(Rnew) (Line 2). The function identifies the service actions of

both the new rule Rnew and the rules that can be triggered by Rnew, and then it returns a set of conditional actions

(a, C), where a is a service action and C is the condition set that must be satisfied to execute the action a.

Subsequently, the algorithm starts to check for a static rule conflict for each serialization event e ∈ ERnew

(Lines 3-12). Static conflict can arise in two types of co-triggerable rule sets related to event e. The first is a set

of rules that can be triggered by e, and the second is a set of the rules that can be triggered by edom, the dominant

co-triggering events of e. In particular, in the second case, we have only to check the rules triggered by the most

dominant co-triggering events. This is because the rule set of the most dominant co-triggerable events of e

completely includes those of other co-triggerable events of e. It follows that if there is no static conflict for the

most dominant co-triggering events, there is no static conflict for the other co-triggering events, as well as event

e. In Line 4, function findMDE(e) finds the most dominant co-triggering events for e in previous event set. For

instance, let {e4, e1;e4, e2;e4, e1;e3;e4, e2;e3;e4} be a co-triggering event set of e4. The most dominant events of e4

in this case are e1;e3;e4 and e2;e3;e4.

In case of no co-triggering event of the event e, we have only to check if the conditional action set of the

new rule cARnew has any service conflict in itself through the function checkConflict(e, cA) (Line 5). Otherwise,

for all the most dominant co-triggering events edom ∈ MDE(e), we take a union of cA(edom) and cARnew and then

check the service conflict (Lines 7-10).

Finally, if the new rule have no static conflict, the algorithm updates the conditional action sets for all edom of

each event e ∈ ERnew (Lines 13).

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

The algorithm uses function checkConflict(e, cA) in order to check static conflicts in conditional action sets.

In this function, if the conditional action set includes any service constraint, the algorithm tests the co-

satisfiablity of the rules with the conflicting actions by using function checkCoSatisfiability(cAconflict) which

checks the co-satifiability of the conditional actions cAconflict based on the service constraint AC ∈ ACWS. The

function first finds all combinations of the conditions that can result in an action in the service constraint AC, and

then it checks co-satisfiability of all combinations of conditions. If there is a combination that turns out be co-

satisfiable, it means that there exists a co-satisfying condition csat, where service actions in cAstatic triggered by an

event e will necessarily violate the service constraint AC.

The performance of the algorithm static_conflict_detection depends on the size of the normalized rule set

and and the service constraints set. The complexity is O(nenam), where ne and na are the number of events and

actions in the rule set, respectively, and m is the number of service constraints. This follows the observation that

the total number of dominant events is lower than ne (i.e., |MDE(e)|<ne), and the traversals in the function

checkConflicts(e, cA) take the time O(nam) because the size of conditional action set is lower than na and the size

of service constraints set is m (i.e. |cA|<na and |ACWS|=m).

Example 3. We demonstrate the proposed algorithm through an example. Suppose that a new rule R7 is inserted

to Example 2 and ACWS has only one constraint, as illustrated in Figure 12. The event specification ER7 has only

one event of e1, which has the co-triggering event e4;e1 (i.e. ER7={e1} and MDE(e1)={e4;e1}). Therefore it is not

necessary to make a new conditional action set of e1, since the set will be included in the set of e4;e1 (i.e. cA(e1)

⊂ cA(e4;e1)). From Figure 10, we obtain cA(e4;e1) = cAR1 ∪ cAR2, where cAR1 = {(asvc
1,{c1∧c3}), (asvc

3,{c1∧

c3})} and cAR2 = {(asvc
2,{}), (asvc

4,{}), (asvc
5,{c1}), (asvc

6,{})}. Next, we get cA’(e4;e1) = {(asvc
1,{c1∧c3}),

(asvc
2,{}), (asvc

3,{c1∧c3}), (asvc
4,{}), (asvc

5,{c1}), (asvc
6,{}), (asvc

7,{c1∧c7})} since cA’(e4;e1) = cA(e4;e1) ∪ cAR7

and cAR7 = {(asvc
7,{c1∧c7})}. Finally, we obtain a static conflict set RCstatic from the result of function

checkConflict(cA’(e4;e1)). The static conflict set is RCstatic = { (e4;e1, {asvc
5,a

svc
6,a

svc
7}, {R5,R6,R7}) }, which

means that R7 has only one static conflict in which the triggering event e4;e1 causes a service conflict against the

constraint {asvc
5, a

svc
6, a

svc
7} in the rule set {R5, R6, R7}.

{asvc
7}{c1^c7}{e1}R7

{asvc
6}{}{e3, e7}R6

{asvc
5}{c1}{e3, e6}R5

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
7}{c1^c7}{e1}R7

{asvc
6}{}{e3, e7}R6

{asvc
5}{c1}{e3, e6}R5

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
5 , a

svc
6 , a

svc
7}AC4

action constraintsACWS

{asvc
5 , a

svc
6 , a

svc
7}AC4

action constraintsACWS

R2

R4

R6

e1

R3

R1

R5

e2

e3

e4;e1

R7

new rule

Figure 12. Example of static conflict detection

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

5.2.2 Dynamic Conflict Detection

Under the existence of composite events that are defined by using conjunctions and serializations, the exact

event matching alone cannot guarantee the nonexistence of conflicts at run-time. Suppose that two rules

respectively contain conjunctions of events, e1 ∧ e2 and e1 ∧ e3, and true conditions for the corresponding

rules. Assuming that the resulting actions of two rules violate a service constraint, we cannot tell at design-time

whether or not they will lead to a rule conflict because we do not know if two event e2 and e3 can occur

simultaneously. The similar argument can be made for the case of conditions of the rules. We know that a co-

satisfiable rule set has a situation in which all the rules can be satisfied. However, we do not know whether a

compatible rule set may have such a situation or not at run-time. These kinds of conflicts are referred to as

dynamic conflicts, which are dependent on the actual event occurrences and the evaluation of conditions at run-

time. Dynamic conflict is formally defined as follows.

Definition 11 (Dynamic conflict). Let RStrig be a set of normalized rules. It is said that RStrig has a dynamic

conflict if it is a concurrable and compatible rule set and its rules have service actions against any service

constraint in ACWS. Formally, RStrig has a dynamic conflict if i) ∃efinal, such that ∀Ri ∈ RStrig, ∃ei (=

ei
1;...;e

i
n) ∈ ERi, and efinal=ei

n, ii) ∀Ri ∈ RStrig (1≤ i ≤ m), ∃ci ∈ CRi, such that c1 ∧ ... ∧ cm ≠ false,

and finally iii) ∃AC ∈ ACWS, such that AC ⊂ ARStrig, where ARStrig = { asvc | asvc ∈ ARi, Ri ∈ RStrig}

The dynamic conflict means that it is possible for the rules in the set to result in some service conflict

because i) the rules can be triggered at a time (concurrable), ii) be satisfied in a situation (compatible), and iii)

cause a conflict against some service constraints. The concept of dynamic conflict has been proposed to improve

the performance of rule conflict detection and resolution at run-time. If the checking of dynamic rule conflict is

not preprocessed at design-time, it should be performed at run-time like in [14] and [40]. However, since it is

quite time-consuming work to check if each rule causes those run-time conflicts, the strategy is not adequate to

ubiquitous computing environments. Moreover, the concept of an epoch may result in some discrepancies in the

environments where instant events and responses are required. In our mechanism, the potential dynamic conflicts

are investigated at design-time, and only the marked rules, namely the rules with dynamic conflicts, are checked

at run-time. The resolution mechanism of the dynamic conflict will be introduced in Section 5.3.

GRM identifies the possibility of dynamic conflicts induced by a new rule only after the rule is judged to

have no static conflict. We propose a dynamic conflict detection algorithm in Figure 13. Indeed the algorithm is

an extension from the static conflict detection algorithm.

Input: A new rule Rnew, a normalized rule set RSWS, a service constraints set ACWS, a conditional action set with

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

preceding events ecAWS

Output: A dynamic conflict set RCdyn, where RCdyn:={ (e, AC, RSdyn) | triggering event e, service constraint AC,

and conflicting rule set RSdyn}

Algorithm dynamic_conflict_detection(in(Rnew, RSWS, ACWS), out(RCdyn))

1: RCdyn:={};

2: ecARnew := makeCondActs4DC(Rnew); // make a conditional action set of the new rule

3: for each e∈ERnew do

4: efinal = finalEvt(e); epre =precEvt(e);

5: ecA(efinal) := ecA(efinal)∪ecARnew;

6: checkConflict4DC(efinal, ecA(efinal));

7: end for

8: if RCdyn=φ then updateCondActs4DC(efinal);

9: else

10: for DC∈RCdyn do

11: createDCCR(DC);

12: markDC(RuleSet(DC), DC);

13: end for

14: end if

15: return RCdyn;

Function makeCondActs4DC(Rnew)

ecA={};

for each a∈ARnew do

if a=asvc(svc) then ecA = ecA∪{(a, CRnew, epre)};

else if a=aint(etrig) || a=aext(etrig) then ecA = ecA∪{(at, Ct∧CRnew, Et∧{epre}| (at, Ct, Et)∈ecA(etrig)};

end if

end for

return cA;

Function checkConflict4DC(efinal, ecA)

for each AC∈ACWS do

if AC⊂{ a | (a, C, E)∈ecA} then

ecAconflict:={(a, C, E)∈ecA | a∈AC};

RSdyn:={ R∈RSWS | (a, C, E)∈ecAconflict and a∈AR};

if checkCompatibility(ecAconflict)=true then RCdyn:=RCdyn∪{(e, AC, RSdyn, PrecEvtSet(ecAconflict),

CondSet(ecAconflict))};

end if

end for

return RCdyn;

Figure 13. Algorithm dynamic_conflict_detection

The algorithm dynamic_conflict_detection starts with a new rule Rnew, a normalized rules set RSWS, and a

service constraint set ACWS, and a conditional action set ecAWS, which is also updated for every rule insertion, as

an input. The output of the algorithm is dynamic rule conflict set RCdyn. It has the same structure as in

static_conflict_detection. However, since dynamic conflicts are dependent on the preceding events of final

primitive events as well as the several conditions, the algorithm introduces ecA(efinal) which is the conditional

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

action set with preceding events for each final event efinal. Furthermore, (a, C, Eprec) ∈ ecA(efinal) denotes that,

on the occurrence of efinal, service action a will be executed when the condition set C is satisfied and all the

preceding actions in Eprec have already carried out.

Similar to the static conflict detection algorithm, the algorithm also checks dynamic rule conflict for each

serialization event e ∈ ERnew (Lines 3-8). Dynamic conflict can happen from the rules that have the events with

the same final primitive event. Function makeCondActs4DC(Rnew) of Line 2 is similar to function

makeCondActs(Rnew) in the algorithm static_conflict_detection. The only difference is that service actions in the

set ecA accompany the preceding events set as well as their conditions set.

Next, we take a union of the conditional action set of efinal, ecA(efinal), and that of the rule, ecARnew, and then

check if the set has any service conflict through the function checkConflict4DC(efinal, ecA) (Lines 5-6). In case

that the event e is the first event with the final event efinal in all rules, the algorithm makes a new conditional

action set from ecARnew and then check the service conflict.

Finally, if the new rule has no dynamic conflict, the algorithm updates the conditional action set of the final

event, ecA(efinal) (Line 8). If there exists any dynamic conflict, the algorithm creates a dynamic conflict check

rule (DCCR) for each dynamic conflict, and then marks the rules that are involved in the dynamic conflict (Lines

10-13). At run-time, DCCR is responsible for checking if the prescribed conditions are satisfied after the

preceding events have occurred. If it turns out that the dynamic conflict is imminent, a corresponding resolution

rule will be triggered.

The complexity of the algorithm dynamic_conflict_detection is also O(nenam), where ne, na, and m are the

number of events, actions, and service constraints, respectively. In this case, the traversals in the function

checkConflicts4DC(e, ecA) take the time O(nenam) because the size of conditional action set ecA is lower than

ne·na and the size of service constraints set is m (i.e. |ecA|<nena and |ACWS|=m).

Example 4. The proposed dynamic conflict detection algorithm is demonstrated through an example. Suppose

that a new rule R7’ is introduced in the modified example of Figure 10 and ACWS has only one constraint, as

shown in Figure 14. Event specification ER7’ has only one serialization event e8;e1, whose final primitive event e1

also appears as a final event of other serializations e4;e1 and e1 (i.e. ER7’ = {e8;e1}, and efinal = e1). In this case, we

use an existing conditional action set of e1. We obtain ecA(e1) = ecAR1(e1) ∪ ecAR2(e1), where

ecAR1(e1)={(asvc
1,{c1∧c3},{e4}), (asvc

3,{c1∧c3},{e4})} and ecAR2(e1)={(asvc
2,{},{}), (asvc

4,{},{}), (asvc
5,{c1∧

c5},{}), (asvc
6,{c6},{e7})}. And then we compute ecA’(e1) = {(asvc

1,{c1∧c3},{e4}), (asvc
2,{},{}), (asvc

3,{c1∧

c3},{e4}), (asvc
4,{},{}), (asvc

5,{c1∧c5},{}), (asvc
6,{c6},{e7}), (asvc

7,{c7},{e8})} since ecA(e1) = ecA(e1) ∪

ecAR7(e1) and ecAR7 = {(asvc
7,{c7},{e8})}. Finally, we get the dynamic conflict set RCdyn from the result of

function checkConflict4DC(ecA’(e1)): RCdyn = { (e1, {asvc
5, a

svc
6, a

svc
7}, {R5’, R6’, R7’}, {e7 ∧ e8}, {c1 ∧ c5 ∧

c6 ∧ c7}) }, which means that R7’ has only one dynamic conflict. That is, if the preceding event e7 ∧ e8 has

occurred before the final event e1, and the condition c1 ∧ c5 ∧ c6 ∧ c7 is satisfied, the event e1 will cause a

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

service conflict against the constraint {asvc
5, a

svc
6, a

svc
7} by the rule set {R5’, R6’, R7’}.

{asvc
7}{c7}{e8;e1}R7’

{asvc
6}{c6}{e7;e3}R6’

{asvc
5}{c1^c5}{e3, e6}R5’

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
7}{c7}{e8;e1}R7’

{asvc
6}{c6}{e7;e3}R6’

{asvc
5}{c1^c5}{e3, e6}R5’

{asvc
4}{}{e3}R4

{asvc
3}{c3}{e2}R3

{asvc
2, a

int(e3)}{}{e1, e5}R2

{asvc
1, a

int(e2)}{c1^c3}{e4;e1}R1

ARCRERRStrig

{asvc
5 , a

svc
6 , a

svc
7}AC4

action constraintsACWS

{asvc
5 , a

svc
6 , a

svc
7}AC4

action constraintsACWS

R2

R4

R6’

e1

R3

R1

R5’

e2

e3

e4;e1

R7’

new rule

e8;e1

Figure 14. Example of dynamic conflict detection

5.3 Dynamic Rule Conflict Resolution

GRM identifies static conflicts and potential dynamic conflicts before new rules are registered in distributed

devices, as illustrated in Figure 9. When a rule has only dynamic conflict without any static conflict, it can be

registered to a device after adding dynamic conflict resolution rules that will resolve the dynamic conflicts at

run-time. Such a rule is registered with a mark indicating the possibility of a dynamic conflict, and it is the

responsibility of GRM to check if the dynamic conflict actually can happen before activating the service actions

of the rule. The procedures defined for managing dynamic conflicts are illustrated in Figure 15.

√

E
prec

asvc(svc)

device GRM

√

device

√

device

C
sat

RDC

√
marked rule with DC

(2) request DC checking (4) inspect other rule's stateDCCR

(1) RDC is ready to activate asvc

DCRR
(4) inspect other rule's state(6) instruct service actions

(3) check DC based

on overall states

(5) resolve DC

if DC happens

(7) activate service actions

efinal

√

E
prec

asvc(svc)

device GRM

√

device

√

device

C
sat

RDC

√
marked rule with DC

(2) request DC checking (4) inspect other rule's stateDCCR

(1) RDC is ready to activate asvc

DCRR
(4) inspect other rule's state(6) instruct service actions

(3) check DC based

on overall states

(5) resolve DC

if DC happens

(7) activate service actions

efinal

Figure 15. Procedure for dynamic conflict management

When a rule marked with a dynamic conflict (DC) is ready to activate its actions after its event specification

and conditions are satisfied, the device requests DC checking to GRM as shown in Figure 15. For this purpose,

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

GRM inspects the status of the other devices that have registered the marked rules of the DC. Later, the other

devices with the marked rules report their status (i.e., events history and conditions). GRM then determines the

possibility of occurrence of the DC based on the overall status, and informs the devices of the result, which

includes the instructions for service actions in case that the DC is going to happen. The devices finally activate

their service actions according to the instruction.

The structures for the dynamic conflict check rule (DCCR) and the dynamic conflict resolution rule (DCRR)

are shown in Figure 16. Note that both rules are also WS-ECA rules. The event specification of DCCR includes

the event for checking DC (eDC) and the preceding-event-set (EPrec). The eDC is an external event that will be sent

from the device to GRM. When GRM receives eDC, it inspects the preceding events in EPrec from all devices that

are associated with the marked rule.

DCCR

on compositeEvent(final-event (efinal) after preceding events (Eprec))

if conflicting-conditions (CDC)

do dynamic-conflict-detection (DCdet)

DCRR

on dynamic-conflict-detection (DCdet)

if activation-conditions (Crsv)

do activation-actions (Arsv)

Figure 16. Schema of DCCR and DCRR

Finally, Figure 17 shows examples of DCCR and DCRR for detecting and resolving a dynamic conflict of

Example 4. The dynamic conflict of the example was RCdyn = { (e1, {asvc
5, a

svc
6, a

svc
7}, {R5’, R6’, R7’}, {e7 ∧ e8},

{c1 ∧ c5 ∧ c6 ∧ c7}) }. DCCR is generated automatically when the marked rule is registered to the device,

while DCRR should be defined by an administrator. Once a dynamic conflict is detected, GRM will generate

internal event RCdyn. Two DCRRs presented in Figure 17 are handling the conflict based on the current

temperature in this example.

DCCR1

on compositeEvent(e1 after e6∧e8)

if c1 ∧ c5 ∧ c6 ∧ c7

do createIntEvent(DC1)

DCRR1

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

on intEvent(DC1)

if c6.temp ≥ c7.temp

do compositeAction(invokeService(asvc
5) and invokeService(asvc

6))

DCRR2

on intEvent(DC1)

if c6.temp < c7.temp

do compositeAction(invokeService(asvc
5) and invokeService(asvc

7))

Figure 17. DCCR and DCRR for the dynamic conflict of Example 4

6. Conclusions and Future Work

This paper presented an event-based rule description language, named WS-ECA, for effective coordination

of web services-enabled devices in ubiquitous computing environment. WS-ECA enables users to describe

required interactions among the service devices in a system where multiple devices exchange their events and

interact with each other based on WS-Eventing and web service invocations. While existing web service based

process execution languages such as WS-BPEL and WS-CDL are specifically proposed for supporting long-

running, transactional business processes, the proposed WS-ECA attempts to support instantaneous, reactive

actions of web services-enabled devices upon a WS-Eventing message through providing means for stateless,

event-based interactions.

WS-ECA rules for individual devices may have discrepancies with each other and cause undesirable

situations when they are executed concurrently, since they are created and processed independently. To address

this problem, we proposed a framework for conflict detection and resolution of distributed WS-ECA rules. The

conflicts of WS-ECA rules defined for distributed devices were categorized into static and dynamic conflicts

depending on whether the conflict is resolved at design-time or run-time. When a rule is evaluated to contain

logical contradiction with other rules at design-time, it is said to be in a static conflict, and it cannot be registered

to the system and must be modified by a user.

On the other hand, if it is judged to have any potential dynamic conflict with others at run-time, additional

rules that are responsible for handling the conflict by instructing some prescribed actions to the corresponding

devices need to be supplemented in case that the conflict can actually happen at run-time. In this paper, we

proposed necessary concepts and formal characterizations of WS-ECA rules, and presented algorithms for static

conflict detection as well as dynamic conflict detection and resolution. The presented framework for event-

driven coordination of distributed web service devices is expected to contribute to the efficient implementation

of emerging ubiquitous service-based systems.

Future work includes access control mechanism and resource management for the purpose of effective rule

management in ubiquitous service environments with multiple users. For instance, authority management with

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

ACL (Access Control Level) can be employed to resolve service conflicts in multi-user environments. Moreover,

advanced service monitoring and administration are also required for robust rule management which includes the

issues such as detection and resolution of deadlock and livelock arising in ubiquitous service network supporting

active rule processing.

References

[1] T. Andrews et al., Business Process Execution Language for Web Services: Version 1.1, OASIS, 2003.

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

[2] R.J. Auburn, J. Barnett, M. Bodell, and T.V. Raman, State Chart XML (SCXML): State Machine Notation

for Control Abstraction 1.0, W3C Working Draft, 2005.

[3] D. Bank et al., Web Services Eventing, W3C Member Submission, 2006.

http://www.w3.org/Submission/WS-Eventing/

[4] N. Bassiliades, and I. Vlahavas. DEVICE: Compiling production rules into event-driven rules using

complex events. Information and Software Technology, 39(5): 331-342, 1997.

[5] J. Bemmel, P. Dockhorn, and I. Widya. Paradigm: event-driven computing. Lucent Technologies, white

paper, 2004. https://doc.telin.nl/dscgi/ds.py/

[6] M. Berndtsson, S. Chakravarthy, and B. Lings. Extending database support for coordination among agents.

Int'l Journal of Cooperative Information Systems, 6(3-4): 315-340, 1997.

[7] G. von Bulltzingsloewen, A. Koschel, P.C. Lockemann, and H.-D. Walter. ECA functionality in a

distributed environment. In N.W. Paton (editor), Active Rules in Database Systems, Springer, 147-175,

1999.

[8] M. Gudgin, M. Hadley, T. Rogers. Web Services Addressing 1.0- Core. W3C Recomendation, 2006.

http://www.w3.org/TR/ws-addr-core/

[9] C. Bussler, and S.Jablonski. Implementing agent coordination for workflow management systems using

active database systems. In Proc. of the Int'l Workshop on Research Issues in Data Engineering (RIDE),

pages 53-59, 1994.

[10] S. Calo, and M. Sloman, Policy-based management of networks and services. Journal of Network and

Systems Management. 11(3): 249-252, 2003.

[11] A. Carter, and M. Vukovic. A framework for ubiquitous web service discovery. In Proc. of the 6th

UbiComp, 2004. http://ubicomp.org/ubicomp2004/adjunct/posters/carter.pdf

[12] S. Chakravarthy, E. Anwar, L. Maugis, and D. Mishra. Design of Sentinel: an object oriented DBMS with

event-based rules. Information and Software Technology, 36(9): 555-568, 1994.

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www.w3.org/Submission/WS-Eventing/
https://doc.telin.nl/dscgi/ds.py/
http://www.w3.org/TR/ws-addr-core/
http://ubicomp.org/ubicomp2004/adjunct/posters/carter.pdf

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

[13] K. M. Chandy. Event-driven applications: costs, benefits and design approaches, Gartner Application

Integration and Web Services Summit 2006, 2006.

http://www.infospheres.caltech.edu/papers/Gartner_20060620.pdf

[14] J. Chomicki, J. Lobo, and S. Naqvi. Conflict resolution using logic programming. IEEE Trans. Knowl. Data

Eng., 15(1): 244-249, 2003.

[15] M. Cilia and A. Buchmann. An active functionality service for e-business applications. ACM SIGMOD

Record, 31(1): 24-30, 2002.

[16] J. Clark and S. DeRose, XML Path Language (XPath) Version 1.0, W3C Recommendation, 1999,

http://www.w3.org/TR/xpath

[17] S. Comai, and L. Tanca. Termination and confluence by rule prioritization. IEEE Trans. Knowl. Data Eng.,

15(2): 257-270, 2003.

[18] U. Dayal, B. Blaustein, A.P. Buchmann, S. Chakravarthy, D. Goldhirsch, M. Hsu, R. Ladin, D. McCarthy,

and A. Rosenthal. The HiPAC project: combining active databases and timing constraints. ACM SIGMOD

Record, 17(1): 51–70, 1998.

[19] O. Diaz, and A. Jaime. EXACT: an extensible approach to active object-oriented databases. VLDB Journal,

6(4): 282-295, 1997.

[20] F.M. Facca, S. Ceri, J. Armani, and V. Demalde. Building reactive web applications. In Proc. of the 14th

Int'l World Wide Web Conf. (WWW 2005), pages 1058-1059, 2005.

[21] A. Friday, N. Davies, N. Wallbank, E. Catterall, and S. Pink. Supporting service discovery, querying and

interaction in ubiquitous computing environments. Wireless Networks 10(6): 631–641, 2004.

[22] S. Gatziu, K.R. Dittrich. SAMOS: an active object-oriented database system. IEEE Data Eng. Bull., 15(1-4):

23-26, 1992.

[23] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl. Physical prototyping with Smart-Its. IEEE Pervasive

Computing, 3(3): 74-82, 2004.

[24] J. Hanson. Event-driven services in SOA: Design an event-driven and service-oriented platform with Mule.

JavaWorld. 2005 http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html

[25] J.-Y. Jung, S.-K. Han, J. Park, and K. Lee. WS-ECA: an ECA rule description language for ubiquitous

services computing. In Proc. of the Workshop on Empowering the Mobile Web (MobEA IV) in conjunction

with WWW 2006, 2006. http://www.research.att.com/~rjana/MobEA-IV/PAPERS/MobEA_IV-

Paper_10.pdf

[26] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Mobile networking for Smart Dust. In Proc. of ACM/IEEE Int'l

Conf. on Mobile Computing and Networking (MobiCom 99), pages 17-19, 1999.

http://www.infospheres.caltech.edu/papers/Gartner_20060620.pdf
http://www.w3.org/TR/xpath
http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html
http://www.research.att.com/~rjana/MobEA-IV/PAPERS/MobEA_IV-Paper_10.pdf
http://www.research.att.com/~rjana/MobEA-IV/PAPERS/MobEA_IV-Paper_10.pdf

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

[27] V. Kantere, and A. Tsois. Using ECA rules to implement mobile query agents for fast-evolving pure P2P

networks. In Proc. of the 3rd Int'l Joint Conf. on Autonomous Agents and Multiagent Systems, pages 1510-

1511, 2004.

[28] N. Kavantzas, et al., Web services choreography description language Version 1.0, W3C Candidate

Recommendation, 2005. http://www.w3.org/TR/ws-cdl-10/

[29] K. Liu, L. Sun, A. Dix, and M. Narasipuram. Norm based agency for designing collaborative information

systems. Information Systems Journal, 11(3): 229-247, 2001.

[30] J. Lobo, R. Bhatia, and S. Nagvi. A policy description language. In Proc. of National Conference on the

American Association for Artificial Intelligence, pagers 291-298, 1999.

[31] T.S. Lopez, D. Kim, T. Park. A service framework for mobile ubiquitous sensor networks and RFID. In

Proc. of the 1st Int'l Symp. on Wireless Pervasive Computing, 2006

[32] Z. Maamar. On coordinating personalized composite web services. Information and Software Technology,

48(7): 540-548, 2006.

[33] B. Michelson. Event-Driven Architecture Overview: Event-Driven SOA is Just Part of the EDA story.

White paper, Patricia Seybold Group, 2006. http://www.psgroup.com/detail.aspx?ID=681

[34] Microsoft, The Microsoft invisible computing project web site. http://research.microsoft.com/invisible/

[35] MIT Project Oxygen web site. http://oxygen.lcs.mit.edu/

[36] OMA: OMA Web Services Enabler (OWSER): Overview. OMA-AD-OWSER Overview-V1 1-20060328-A

(2006). http://www.openmobilealliance.org/release program/owser v1 1.html

[37] N.W. Paton, and O. Díaz. Active database systems. ACM Computing Surveys, 31(1): 63-103, 1999.

[38] C. Peltz. Web services orchestration and choreography. IEEE Computer 36(10): 46-52, 2003.

[39] A. Sashima, N. Izumi, and K. Kurumatani. Location-mediated coordination of web services in ubiquitous

computing. In Proc. of IEEE Int’l Conf. Web Services (ICWS’04), pages 109-114, 2004.

[40] C.S. Shankar, A. Ranganathan, and R. Campbell. An ECA-P policy-based framework for managing

ubiquitous computing environments. In Proc. of the 2nd Int’l Conf. on Mobile and Ubiq. Sys., pages 33-42,

2005.

[41] UPnP, The UPnP forum web site, http://www.upnp.org

[42] S. Vinoski. Integration with web services. IEEE internet computing, 7(6): 75-77, 2003.

[43] I. Vlahavas, and N. Bassiliades. Parallel, object-oriented, and active knowledge base systems. Advances in

Database Systems, Kluwer Academic Publishers. 1998.

[44] M. Weiser. The computer for 21st century.Scientific American, 265: 94-104, 1991.

http://www.w3.org/TR/ws-cdl-10/
http://www.psgroup.com/detail.aspx?ID=681
http://research.microsoft.com/invisible/
http://oxygen.lcs.mit.edu/
http://www.openmobilealliance.org/release%20program/owser%20v1%201.html
http://www.upnp.org/

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

[45] Y. Yokohata, Y. Yamato, M. Takemoto, and H. Sunaga. Service Composition Architecture for

Programmability and Flexibility in Ubiquitous Communication Networks. In Proc. of Int'l Symp. on

Applications and the Internet Workshops (SAINTW’06), pages 142-145, 2005.

Appendix. WS-ECA rules for the morning cook service example

A. alarm-clock.xml

<ECARule name="alarm-clock-rules"

 targetNampespace="http://di.snu.ac.kr/alarm-clock/rules/"

 xmlns:al="http://di.snu.ac.kr/alarm-clock/type/"

 xmlns="http://di.snu.ac.kr/2005/eca/">

<events>

 <timeEvent type="periodic" name="get-up-time" unit="P1D">

 0000-00-00T07:00:00Z </timeEvent>

 <timeEvent type="relative" name="before-get-up-time"

 baseEvent="get-up-time" interval="-PT20M"/>

</events>

<actions>

 <createExtEvent name="pre-alarm"

 extEvent="http://di.snu.ac.kr/event/alarm-clock/alarm">

 <al:contents>'20min before get-up'</al:contents>

 </createExtEvent>

 <createExtEvent name="get-up-alarm"

 extEvent="http://di.snu.ac.kr/event/alarm-clock/alarm">

 <al:contents>'get-up'</al:contents>

 </createExtEvent>

</actions>

<rules>

 <rule name="alarm-before-get-up-rule">

 <event name="before-get-up-time"/>

 <condition expression="/alarm/today/@holiday='no'"/>

 <action name="pre-alarm"/>

 </rule>

 <rule name="alarm-on-get-up-rule">

 <event name="get-up-time"/>

 <condition expression="/alarm/today/@holiday='no'"/>

 <action name="get-up-alarm"/>

 </rule>

</rules>

</ECARule>

B. rice-cooker.xml

<ECARule name="rice-cooker-rules"

 targetNampespace="http://di.snu.ac.kr/rice-cooker/rules/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:rc="http://di.snu.ac.kr/rice-cooker/WSDL/"

 xmlns="http://di.snu.ac.kr/2005/eca/">

<variables>

 <variable name="hasEnoughRice" deviceVar="rc:hasEnoughRice"/>

</variables>

<events>

 <intEvent name="cooking"/>

 <extEvent name="alarm"

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

 eventID="http://di.snu.ac.kr/event/alarm-clock/alarm"/>

 <svcEvent type="before" name="before-cooking" service="rc:cook"/>

 <svcEvent type="after" name="after-cooking" service="rc:cook"/>

 <compositeEvent type="SEQ" name="alarm-after-out-of-rice" TTL="PT1H">

 <event name="cooking"/><event name="alarm"/>

 </compositeEvent>

</events>

<actions>

 <createIntEvent name="start-cooking" intEvent="cooking"/>

 <createIntEvent name="detect-out-of-rice" intEvent="out-of-rice"/>

 <createExtEvent name="complete-cooking" extEvent="http://di.snu.ac.kr/event/rice-

cooker/cooking-completion"/>

 <invoke name="invoke-cooking" service="rc:cook"/>

 <invoke name="alert-out-of-rice" service="rc:alert">

 <rc:contents>out of rice</rc:contents>

 </invoke>

</actions>

<rules>

 <rule name="cooking-rule">

 <event name="alarm"/>

 <condition expression="(/alarm/contents='20min before get-up') |

(/alarm/contents='30min before dinner')"/>

 <action name="start-cooking"/>

 </rule>

 <rule name="enough-rice-rule">

 <event name="cooking"/>

 <condition expression="hasEnoughRice=true"/>

 <action name="invoke-cooking"/>

 </rule>

 <rule name="not-enough-rice-rule">

 <event name="cooking"/>

 <condition expression="hasEnoughRice=false"/>

 <action name="detect-out-of-rice"/>

 </rule>

 <rule name="out-of-rice-alarm-rule">

 <event name="alarm-after-out-of-rice"/>

 <condition expression="/alarm/contents='get-up'"/>

 <action name="alert-out-of-rice"/>

 </rule>

 <rule name="cooking-completion-rule">

 <event name="after-cooking"/>

 <condition expression="true"/>

 <action name="cooking-completion"/>

 </rule>

</rules>

</ECARule>

C. coffee-maker.xml

<ECARule name="coffee-maker-rules"

 targetNampespace="http://di.snu.ac.kr/coffee-maker/rules/"

 xmlns:cm="http://di.snu.ac.kr/coffee-maker/WSDL/"

 xmlns="http://di.snu.ac.kr/2005/eca/">

<events>

 <extEvent name="cooking-completion"

 eventID="http://di.snu.ac.kr/event/rice-cooker/cooking-completion"/>

 <extEvent name="alarm"

 eventID="http://di.snu.ac.kr/event/alarm-clock/alarm"/>

 <compositeEvent type="AND" name="cooking-and-get-up" TTL="PT30M">

 <event name="cooking-completion"/><event name="alarm"/>

 </compositeEvent>

Published in Information and Software Technology, Vol. 49, No. 11, Nov 2007, pp. 1141-1161.

 <timeEvent type="relative" name="coffee-making-time"

 baseEvent="cooking-and-get-up" interval="PT10M"/>

</events>

<actions>

 <invoke name="make-coffee" service="cm:makeCoffee"/>

</actions>

<rules>

 <rule name="coffee-making-rule">

 <event name="coffee-making-time"/>

 <condition expression="/alarm/contents='get-up'"/>

 <action name="make-coffee"/>

 </rule>

</rules>

</ECARule>

