
Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

Business Process Choreography for B2B Collaboration

Jae-yoon Jung, Wonchang Hur, Hoontae Kim, and Suk-Ho Kang

Department of Industrial Engineering, Seoul National University, Seoul, 151-742, Republic of

Korea

Abstracts

We propose a methodology for business process choreography. Our methodology provides

specifications of two types of business processes (Contract Process and Executable Process),

and an interface protocol to represent interoperability patterns between the processes. Through

our approach, existing processes usually managed by companies’ own internal WFMS can be

put together to cooperate and controlled following a consistent procedure. We also implemented

a prototype business process management system to support our business process choreography

methodology. The system is built on top of existing WFMS’s. It facilitates creation and

instantiation of Contract Processes, and manages an automatic execution of the Interface

Protocol.

Keywords: Business process choreography, Process interoperability patterns, B2B collaboration

1. INTRODUCTION

Today’s e-business environment urges many companies to cooperate with each other. For cost-

effective and rapid provision of good services, a company needs to interchange documents and

related information with many business partners which include suppliers, customers, and

various service providers. In such an environment, business processes inevitably get more

entangled and entails collaboration between distributed and heterogeneous platforms which are

not easy to manage. Therefore, a systematic and automated management of business process

execution has drawn a great concern among companies and organizations that necessitate

collaborative business process.

BPM (Business Process Management) can be defined as “a set of services and tools that provide

explicit process management (e.g., process analysis, definition, execution, monitoring and

administration), including support for human and application-level integration”.1 It is associated

with a number of technologies, such as workflow, Enterprise Application Integration (EAI),

B2Bi, and also with concepts such as Business Process Reengineering (BPR), Business Process

Automation (BPA) and Business Process Integration (BPI).2

In an effort to realize the concept of BPM, various business process specifications are recently

proposed, and they make it possible to define structure of a business process, exchangeable

messages and operations. They also make it possible to incorporate external web services for

modeling collaboration with external service providers.3 However, they do not provide solutions

to combine existing workflow or internal processes seamlessly in the collaboration design. In

more intimate e-business environments such as supply chain management, a more active

collaboration is needed at the process level and at the service and application level.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

In this paper, we propose a business process choreography methodology. Our methodology

provides two specifications that can be used to represent two types of business processes

(Contract Process and Executable Process) and a protocol specification (Interface Protocol) used

to represent interaction between the processes. Through our approach, existing processes which

are usually managed by companies’ own internal WFMS can be put together and controlled

following a consistent procedure. We also implemented a prototype business process

management system to support our business process choreography methodology. The system is

built on top of existing WFMS’s which manage Executable Processes, and facilitates creation

and instantiation of Contract Processes, and management of automatic execution procedure of

the Interface Protocol.

2. COLLABORATIVE BUSINESS PROCESSES

In this chapter, we first provide classification of business processes in a web-based B2B

environment, and then describe how to organize them into collaboration. The essence of our

business process choreography is a formal methodology to represent interoperability patterns

between two business processes and to provide a way to systematically automate the patterns.

In our approach, we characterize a collaborative business process as a particular contract among

business partners. The contract may involve several internal processes of the partners, and

clearly describe how to associate the involved processes. Because the contract itself has a

logical procedure, it also can be represented as a form of business process. We call the logical

procedure of the contract Contract Process (CP), and the partners’ own internal processes

Executable Process (EP). A particular communication protocol, called Interface Protocol (IP),

is defined to specify interactions between CP and EP. These concepts can be defined more

specifically as follows.

[Definition of Contract Process (CP)] CP defines procedural business transactions that each

business partner participates in and carries out for the purpose of collaboration. It is described as

a sequence of business logics that contain elements of data formats, logical endpoints, security

levels, etc. CP can be expressed by using recently proposed specifications such as BPML,

BPEL4WS and ebXML BPSS.

[Definition of Executable Process (EP)] EP represents an internal, routine process performed

by individual business partners involved in CP. Usually, EPs are controlled by the partners’ own

WFMS, so it can be specified using XPDL, which is a standard workflow definition language.

EP itself may not have any relation with a specific CP, but it can be related to the CP through IP.

[Definition of Interface Protocol (IP)] IP is used to describe interoperability relationships that

one or more EP in a business partner interacts with one CP. The relationships are expressed by

means of interoperability patterns which will be discussed in the next chapter.

Figure 1 shows the relationship among CP, EP and IP in a web-based B2B environment. The

figure illustrates three possible scenarios of an organization interacting with other partners

through our business process choreography concept. In the first scenario, the organization

communicates only with external application services (e.g., web services) of the Partner 1

through CP. In the second, the organization’s CP interacts with EP of the Partner 2 as well as

external application services of the Partner 1. The last one shows an independent collaboration

scenario, in which the organization’s CP interacts with CP of all the partners, as well as EP and

web service.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

IP CP

EP

EP

EP

IP CP

IP CPEP CP IP EP EP

IP EP EP

Users

Appli-
cations

Organization
Partner 1

Partner 2

Partner 3

application service

Figure 1. Collaboration scenarios

This approach has several advantages as follows over other approaches.

- Reusability – Our choreography methodology does not require any modification or

adaptation of EPs, therefore EPs are totally reusable. We do not need to use different

workflow processes definitions for each partner, but use common definitions if they are

identical. Reuse of EP helps agile and flexible response to new business requirements.

- Independence – IP guarantees design independence of EP and CP. In other words,

design of IP has no effect on that of EP or CP, which implies EP and CP can be

designed without considering how it will be incorporated in IP. Moreover, if it is

necessary to modify some business logics of EP or CP, we can modify the CP or EP

independently, if the modified parts are not related to IP.

- Flexibility – An organization only has to modify IP, not CP or EP, if he wants to make a

business transaction with a new partner. The process logics of the organization need not

to be modified or altered. Because CP supports three collaboration scenarios, the

organization can flexibly collaborate with new business partners in various types of

collaboration environments, shown as Figure 1.

3. PROCESS INTEROPERABILITY

In a B2B collaboration environment, there can be various patterns of interaction among business

processes. To support an effective control of the interaction, it is required to identify

interoperability patterns and formally represent the patterns. In this chapter, we provide a

systematic methodology to facilitate the formal representation of the interoperability patterns.

3.1 Interoperability Patterns

We analyzed various types of interoperation between business processes, and identified 6

primitive interoperability patterns which can be used as building blocks to express complex

interactions. These primitives are extended from WfMC’s interoperability models: chained

model, nested model, and synchronized model.4

First of all, in a chained model, a process triggers the creation and enactment of another process,

and then takes no further interest in the newly created process. This model is subdivided into the

following two types.

- Chained Substitutive (CS) – a process terminates right after initiating a new process.

The newly created process replaces the original process.

- Chained Additive (CA) – a process just goes on its own execution after initiating a new

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

process. Two processes do not interact again with each other.

Secondly, in a nested model, after a process invokes another process, the invoking process takes

execution results from the invoked process at a particular activity. We subdivide this model into

three patterns.

- Nested Synchronous (NS) – a return point where a process takes back the execution

results is the same as the invoking point of the process. The invoked process plays a

role of a sub-process substituting an activity in the invoking process.

- Nested Deferred (ND) – a return point is deferred to a certain activity that comes after

the invoking point. The intervening activities between the two points are overridden by

the new process.

- Nested Parallel (NP) – NP is the same as NR except that the invoking process can be

activated after all the intervening activities are completed.

Finally, the synchronized model is described as follows.

- Parallel Synchronized (PS) – two processes are synchronized at a specific point. Only

after both of them reach the point, they can continue their execution.

Figure 1 shows the primitive interoperability patterns which can happen between two processes.

c

a

e

ba b

PS

c

d

a b

c

d

a b

NS ND NP

(a) chained

c

a b

c

a b

CS CA

(b) nested (c) synchronized

Figure 2. Primitive interoperability patterns between two processes

One thing that you need to consider here is the concept of process encapsulation.5 Encapsulating

a business process is to conceal a detailed specification of the process from external entities. In

other words, if a process is not encapsulated, we can get information about how to invoke

activities in the process, and directly activate them. To interoperate with an encapsulated process,

we have to send messages or raise events to a target enactment system that controls the process.

3.2 Expression of Interoperability Patterns

To formally specify the interoperability patterns, we define 5 interoperability operations. The

operations represent atomic functions that are required for a process to initiate or activate

services of another process. The operations facilitate messages exchange or event notification

between business processes.

First of all, it is required that a process instance makes a connection with a certain process

instance. Instantiate operation requests the other party’s enactment system to create an instance

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

of a target process and return the key of the instance. Initiate operation requests the system to

find one of existing instances which wait for a connection after previous activities have been

done.

Next, an invoking process instance needs operations to interact with the process instance which

has been decided by Instantiate or Initiate operation. Resume operation notifies the invoking

instance, which are waiting or suspended immediately after its invocation, to continue its next

activities. But, Transit operation sends the notification of continuation to the invoking instance

which has done or been doing appointed activities after its invocation. Finally, Synchronize

operation expresses Synchronized pattern, that is, the operation makes two process instances

continue their next activities after both of their appointed activities are done.

The characteristics of interoperability operations are compared in Table 1. First two columns

shows Transit, Resume and Synchronized operations should follow Instantiate and Initiate

operations. And in the next two columns, Instantiate and Resume operations have the enactment

system treat the request immediately. But Initiate, Transit, Synchronize operations have the

enactment system check transitions of the target activity because the system should examine

whether or not the previous activities of the instance have been done.

Table 1. Process interoperability operations

operations connector follower
immediate

execution

check

transition

state

attribute
Wf-XML

Instantiate O O O CreateProcessInstance

Initiate O O O Notify

Transit O O O Notify

Resume O O O
ChangeProcessInstanc

eState

Synchronize O O Notify

Additionally, all the operations, except Synchronize, have ‘state’ attributes which describe states

of invoking processes after the execution of operations. The ‘state’ attribute can have one of the

following values: waited, suspended, terminated, disconnected, and continued. And,

Synchronize operation implicitly has “continued” value as its ‘state’ attribute. The state of

Initiate and Invoke operations decides interoperability patterns of two processes.

To support the effective implementation of the operations, Wf-XML messages, shown in the

table, may be exploited. The Wf-XML standard provides XML specifications that facilitate

XML-based communication between heterogeneous workflow systems.6 For instance, the

Initiate operation can request another process engine to create a target process instance by

sending the “CreateProcessInstance” message in the Wf-XML specification.

By composing theses operations, we can express the primitive interoperability patterns

described in the previous section. The expressions of the patterns are shown in Table 2. For

example, the pattern NS can be expressed by using two operations of Instantiate(state=‘waited’)

and Resumed, which implement a sub-process overriding an activity.

Table 2. Expression of primitive interoperability patterns by interoperability operations

Pattern Expression

Chained
CS Instantiate/Initiate(state=‘terminated’)

CA Instantiate/Initiate(state=‘disconnected’)

Nested NS Instantiate/Initiate(state=‘waited’)  Resume

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

ND Instantiate/Initiate(state=‘suspended’)  Resume

NP Instantiate/Initiate(state=‘continued’) Transit/Synchronize

Synchronized SP Synchronize

Noticeably, the primitive interoperability patterns can be extended to hybrid patterns by

combining each other. Figure 5 illustrates the hybrid patterns combining two arbitrary primitive

patterns except chained patterns. They cannot be blended with the other patterns because their

connection is lost after a new process starts.

The hybrid patterns also can be expressed by the interoperability operations. For example, in the

figure, NSND can be represented by using three operations of Initiate(state= ‘waited’),

Resume(state=‘suspended’) and Resume(state=‘continued’). The other hybrid patterns can be

expressed in the same way.

NS NP NP PSNS ND NS PSND NP ND PS

Figure 3. The hybrid interoperability patterns between two processes

4. BUSINESS PROCESS CHOREOGRAPHY

An overall procedure for business process choreography consists of four steps. Firstly, all

participants make interoperability contracts and extract business logics together, and they design

a common CP for a collaborative business process. Secondly, each participant checks out his

own internal processes, and prepares EPs which are necessary for B2B collaboration. Finally,

each participant analyzes relationships between the common CP and his EPs, and defines his

own IP which formally specifies interactions between the CP and his EPs.

Figure 3 illustrates a CP for a purchasing process between a customer and a supplier. The CP

defines business logics and message exchange for the participants to perform the purchasing

process. And four EPs in the figure show workflow processes of a customer and a supplier.

RequestOrder EPR and CheckInvoice EPC are the customer’s own internal process for

Purchasing CPP. The supplier also participates in the CP with CheckOrder EPO and

CreateInvoice EPI.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

sendAcceptance

receiveRequest

sendRejection

sendRequest

checkInvoice

sendConfirmation

createInvoice

createPO

sendPO

START

END

modifyPO

(a) RequestOrder EPR

receiveInvoice

checkInvoice

(b) CheckInvoice EPC

sendConfirmation

(c) Purchase CPR

analyzePO

sendRejection

(d) CheckOrder EPO

sendAcceptance
receiveResponse

createInvoice

sendInvoice

receiveConfirmation

purchaseOrder

acceptance

rejection

invoice

purchaseOrder

acceptance

rejection

invoice

(e) CreateInvoice EPI

Customer or Supplier SupplierCustomer

invoiceID
invoiceID

Figure 4. An example of a purchasing process

To put the interactions into operation, in the figure, the IP for the customer is defined by

associating RequestOrder EPR and CheckInvoice EPC with Purchase CPP. The IP for the

supplier is also defined in the same way. We assume that EPC is encapsulated and EPR is not.

Now, every interaction in IP is translated into the interoperability patterns, and then specified by

using the interoperability operations. For instances, as the interoperability pattern between EPR

and CPP corresponds to the primitive pattern NP as described in the previous chapter, the first

interaction between EPR and CPP is expressed by Instantiate(state=‘continued’) operation and

he second by Transit(state= ‘continued’) or Transit(state= ‘terminated’) operation. In the case

of EPC, we can not associate CPP directly with activities of EPC because of its encapsulation.

Instead, the EPC is used only for instantiation and notification of its termination to the invoking

process CPP. We can easily find that and the interoperability pattern between them corresponds

to NS, and EPC can be expressed by Instantiate(state=‘waited’) and Transit(state=

‘terminated’) operations

Figure 4 shows how business processes for purchasing are interacted between common CP and

EPs of the customer. IP contains information of the interoperability patterns and message

transformation. And all operations in the patterns are matched to corresponding Wf-XML

messages with input/output parameters. For example, if activity sendPO in EPR sends

“CreateProcessInstance.request” message with ObserverKey, ContextData, and etc., IP

translates “purchaseOrder” to “PO” schema, and requests CPR of its instantiation. At last, when

the key of new CPP instance is returned to EPR by means of “CreateProcessInstance.response”

with ProcessInstanceKey, the first interaction is completed.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

EPR.receiveJudgment

EPR.sendPO

sendAcceptance

createPO

receiveJudgment

sendPO

START

END

modifyPO

(a) RequestOrder EPR

receiveRequest

(d) Purchase CPP

receiveResponse

sendRejection

sendRequestCPP.sendAcceptance

CPP.receiveRequest

CPP.sendRejection

receiveInvoice

checkInvoice

(b) CheckInvoice EPC

EPC CPP. checkInvoice

(c) Purchase IPP

sendConfirmation

checkInvoice

sendConfirmation

purchaseInvoice invoice

judgment  rejection

purchaseOrder  PO

invoiceID invoiceID

EPC
CPP. checkInvoice

Notify

Encaptulation="Yes" Pattern=“NS”

Encaptulation="No" Pattern=“NP"

Notify

State:Completed, ResultData

CreatProcessInstance

ObserverKey, ContextData 

 ProcessInstanceKey

CreatProcessInstance

 ObserverKey , ContextData

ProcessInstanceKey 

ChangeProcessInstanceState

State:Completed, ResultData

ChangeProcessInstanceState

State:Completed, ResultData

Encaptulated
workflow process

Instantiate(state=‘waited’)

Resume(state=‘terminated’)

Instantiate(state=‘continued’)

Transit(state=‘terminated’)

createInvoice

Notify
Notify

 Event ContextData judgment  acceptance

Transit(state=‘continued’)

EPR.receiveJudgment

Figure 5. IP design for a purchasing process

The Purchase IPP in Figure 4 is described in XML specification as follows. The IP specification

is based on XML Schema which we defined for the prototype system. It has two Coupling
elements to couple EPR and EPC with CPP. The first Coupling element expresses interoperability

pattern NP, and the second does pattern NS.

<InterfaceProcess Id=“IP_P” Name=“Purchase IP” xmlns=...>
<ContractProcess Id=“CP_P” Name=“Purchase CP” Encapsulated=“No” Key=“http://…” />
<ExecutableProcess Id=“EP_R” Name=“RequestOrder” Encapsulated=“No” Key=“http://...” />
<ExecutableProcess Id=“EP_C” Name=“CheckInvoice” Encapsulated=“Yes” Key=“http://...”/>

<Coupling Id=“1”>

<Instantiate From=“EP_R” To=“CP_P” State=“continued”>
 <Source Activity=“epr:sendPO” InputData=“epr:purchaseOrder”/>
 <Destination Activity=“cpp:receiveRequest” OutputData=“cpp:PO”/>

</Instantiate>
<Transit From=“CP_P” To=“EP_R” State=“continued”>

<Source Activity=“cpp:sendAcceptance” InputData=“cpp:acceptance”/>
<Destination Activity=“epr:receiveJudgment” OutputData=“epr:judgment”/>

</Transit>
<Transit From=“CP_P” To=“EP_R” State=“terminated”>

<Source Activity=“cpp:sendRejection” InputData=“cpp:rejection”/>
<Destination Activity=“epr:receiveJudgment” OutputData=“epr:judgment”/>

</Transit>
</Coupling>

<Coupling Id=“2”>

 …
</Coupling>

</InterfaceProcess>

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

5. SYSTEM DESIGN

We implemented a prototype system to support business process choreography. The overall

architecture of the system is presented in Figure 5. The system consists of two sub-systems of

WFMS and BPMS. WFMS has its own storage, client tools and engine(WF_Engine), and takes

the charge of EP control using them. BPMS has storage and an engine for managing

CP(BP_Engine). It also has storage and an interpreter for processing IP(IP interpreter).

BPMSWFMS

IP Storage CP StorageEP Storage

BP_EngineIP Interpreter

Wf-XML
interpreter

WF_Engine

Worklist

Manager

Process
control

Audits
analysis

Task
schedule

Task
dispatch

Process
control

Audits
analysis

Task
schedule

Task
dispatch

Application Interface

B
2

B
 I

n
te

rf
a

c
e

H
u

m
a

n
 I

n
te

rf
a

c
e

Admin-
istrator

Users

ERP SCM CRM Legacy

App. Adapter

Wf-XML
interpreter

App. adapter

Admin tool

Monitor tool

Analysis tool

Admin tool

Monitor tool

Analysis tool
Schema

translator

Pattern
control

Operation
handler

Schema
translator

Pattern
control

Operation
handler

BPMS

WFMS

web services

Service
interface

Process
control

Audits
analysis

Service
interface

Process
control

Audits
analysis

Interoperability operations

In
te

ro
p

e
ra

b
il

it
y
 o

p
e
ra

ti
o

n
s

Application services

import

export`XPDLXPDLXPDL
XPDLXPDLXPDL

import

export` XPDLXPDLBPML
XPDLXPDLBPML

Figure 6. Overall architecture of our business process choreography system

The system uses XML-based process definitions, which are stored in XML database. In detail,

workflow process definitions have been stored in EP storage, based on XPDL specifications,

defined by WfMC.7 And collaboration process definitions have been stored in CP storage, based

on BPML specification, defined by BPMI.8 Finally, IP Storage has stored IP specifications,

which follows XML schema we defined.

WF_Engine and BP_Engine are enactment engines of WFMS and BPMS, respectively. Two

engines manipulate the process definitions by two techniques, XPath and JAXB(Java

Architecture for XML Binging). And, the engines communicate with each other through the IP

interpreter. IP interpreter helps CP and EP to interact, based on information of interoperation

patterns, operations and schema transformation in IP specification.

Both of two systems have Wf-XML interpreter and Application adapter. Wf-XML interpreter

plays a role in translator between messages and interoperability operations. Application adapter

supports automated tasks in workflow or business collaborations.

Figure 6 illustrates an operation sequence of our system following the execution scenario of a

purchasing order process.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

1) Send Wf-XML message
with purchase order.

Internal
WF_Engine

IP Interpreter BP_Engine IP Interpreter
External

WF_Engine

CreatProcessInstance.Request

Initiate(state=‘continued’)
receiveRequest

Transit(state=‘continued’)
sendAcceptanceNotify

Initiate(state=‘continued’)
sendRequest

ProcessInstanceStateChanged

Terminated
receiveResponse

CreatProcessInstance.Response

CreatProcessInstance.Request

CreatProcessInstance.Response

4) Translate operation to
Wf-XML message and
send it to external Engine.

5) Initiate workflow process
instance and return its key .

3) Enact contract process
as its specification.

7) Receive acceptance
and terminate the instance.

6) Send acceptance
message for purchase order
and terminate the instance.

2) Execute corresponding
operation to BP_Engine.

Figure 7. Overall architecture of our business process choreography system

1) Internal WF_Engine sends a Wf-XML message with purchase order to IP interpreter in

order to start a new contract process.

2) IP interpreter execute corresponding operation to BP_Engine in order to initiates the

contract process based on IP specifications.

3) BP_Engine creates and enact the contract process instance. And if it wants to interact

with workflow, it requests for IP interpreter to perform operations in corresponding IP

specification.

4) IP interpreter translates operations to Wf-XML messages and send them to pre-defined

Wf_Engines, which can be external WF_Engines.

5) External WF_Engine parses the Wf-XML message. It creates the workflow process

instance and returns its key.

6) The Wf_Engine enacts the workflow instance. If the instance transits or changes its

state, the engine sends Wf-XML messages to its corresponding IP interpreter.

7) Internal WF_Engine receives the Wf-XML messages and transits the corresponding

workflow process instance.

6. CONCLUSION

In this paper we proposed a methodology of choreographing business processes to achieve an

automated control of collaborative interactions between business partners. The advantage of our

approach is that we can establish flexible and extensible interactions between partners involved

in B2B collaboration without modifying a structure of business processes of them. This is

because we separated procedural business logics required to complete the interactions from the

individual processes involved, and adopted a coupling technique based on interoperability

patterns between business processes.

References

1. Gartner group, “Impact of BPM on Application Development,” Gartner Symposium 2001,

Orlando, Fla., 2001.

Business Process Choreography for B2B Collaboration

Published in IEEE Internet Computing, Vol. 8, No. 1, Jan/Feb 2004, pp. 37-45.

2. J. Pyke, “What’s happened to workflow?” Information Management & Technology, vol. 35,

no. 6, 2002, pp.254-256.

3. C. Peltz, “Web services orchestration- a review of emerging technologies, tools, and

standards,” Hewlett Packard, Co., 2003.

4. WFMC-TC-1012, Workflow Standard—Interoperability Abstract Specification, Workflow

Management Coalition, Winchester, UK, 1999.

5. Y. Kim et al., “WW-Flow: Web-Based Workflow Management with Runtime

Encapsulation,” IEEE Internet Computing, vol. 4, no. 3, May/June 2000, pp.55-64.

6. WFMC-TC-1023, Workflow Standard—Interoperability Wf-XML Binding, Workflow

Management Coalition, Lighthouse Point, Fla., 2001.

7. WFMC-TC-1025, Workflow Process Definition Interface—XML Process Definition

Language, Workflow Management Coalition, Lighthouse Point, Fla., 2002.

8. A. Arkin, BPMI Proposed Recommendation, Business Process Modeling Language,

Business Process Management Initiative, 2003.

