Chapter 6: Noun Phrases and Agreement

Syntactic Constructions in English
Kim and Michaelis (2020)
Classification of Nouns

Syntactic Structures
- Common Nouns
- Pronouns
- Proper Nouns

Agreement Types and Morphosyntactic Features
- Noun-Determiner Agreement
- Pronoun-Antecedent Agreement
- Subject-Verb Agreement

Semantic Agreement Features

Partitive NPs and Agreement
- Basic Properties
- Two Types of Partitive NPs
- Measure Noun Phrases

Modifying an NP
- Adjectives as Prenominal Modifiers
- Postnominal Modifiers

Conclusion
Classification of Nouns

Types of Nouns in English:

<table>
<thead>
<tr>
<th>Noun Type</th>
<th>Common Noun</th>
<th>Countable</th>
<th>Desk, book, difficulty, remark, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>countable</td>
<td>non-count</td>
<td>butter, gold, music, furniture, laziness, etc.</td>
</tr>
<tr>
<td></td>
<td>proper noun</td>
<td></td>
<td>Seoul, Kyung Hee, Stanford, Palo Alto, January, etc.</td>
</tr>
<tr>
<td>pronoun</td>
<td>personal</td>
<td></td>
<td>he, she, they, his, him, etc.</td>
</tr>
<tr>
<td></td>
<td>relative</td>
<td></td>
<td>that, which, what, who, whom, etc.</td>
</tr>
<tr>
<td></td>
<td>interrogative</td>
<td></td>
<td>who, where, how, why, when, etc.</td>
</tr>
<tr>
<td></td>
<td>indefinite</td>
<td></td>
<td>anybody, everybody, somebody, nobody, anywhere, etc.</td>
</tr>
</tbody>
</table>
Whether a noun is countable or not does not fully depend on its reference (e.g., *desk* vs. *furniture*).

‘Flexible’ nouns can be used as count or non-count (‘mass’) noun.

(2) a. The path was made of brick.
 b. She piled bricks on the deck.

(3) a. We have had many difficulties.
 b. Do you have difficulty getting up?

Proper nouns denote specific people or places and are typically uncountable.
(4) Combinatory Possibilities with Determiners:

<table>
<thead>
<tr>
<th></th>
<th>Proper N</th>
<th>Common N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>countable</td>
<td>uncountable</td>
</tr>
<tr>
<td>Only N</td>
<td>Einstein</td>
<td>*book</td>
</tr>
<tr>
<td>the + N</td>
<td>*the Einstein</td>
<td>the book</td>
</tr>
<tr>
<td>a + N</td>
<td>*an Einstein</td>
<td>a book</td>
</tr>
<tr>
<td>some + N</td>
<td>*some Einstein</td>
<td>*some book</td>
</tr>
<tr>
<td>N + s</td>
<td>*Einstein</td>
<td>books</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common nouns with a determiner

- Common nouns can have a determiner as a specifier, unlike proper nouns and pronouns.

- In particular, count nouns cannot be used without a determiner when they are singular.

 (5) a. *(The) student completes a self-assessment form.
 b. *(The) book includes a suggestive chapter on how gestures and body language vary culturally.

- However, mass or plural count nouns are fully grammatical as bare NPs with no determiners.

 (6) a. Rice is available in most countries.
 b. Students learn curriculum content, and teachers teach curriculum content.
(7) \[
\begin{align*}
\text{(a)} & \quad \text{FORM} \langle \text{book} \rangle \\
& \quad \text{SYN} \begin{bmatrix}
\text{HEAD} & \text{POS} & \text{noun} \\
\text{VAL} & \text{SPR} & \langle \text{DP} \rangle \\
\text{COMPS} & \langle \rangle \\
\end{bmatrix}
\end{align*}
\]
\[
\begin{align*}
\text{(b)} & \quad \text{FORM} \langle \text{student} \rangle \\
& \quad \text{SYN} \begin{bmatrix}
\text{HEAD} & \text{POS} & \text{noun} \\
\text{VAL} & \text{SPR} & \langle \text{DP} \rangle \\
\text{COMPS} & \langle \rangle \\
\end{bmatrix}
\end{align*}
\]
Count nouns with a DP specifier: example tree

(8) NP
 N′
 [SPR ⟨1DP⟩]
 COMPS ⟨⟩
 Det book
 the
We have seen that not only a simple lexical element (e.g., a, an, this, that, any, some, his, how, which) but also a phrasal expression like a possessive phrase can serve as a specifier.

(9) a. [[My brother]'s] friend learned dancing.
 b. [[The president]'s] bodyguard learned surveillance.
 c. [[The King of Rock and Roll]'s] records led to dancing.

(10) \[
 \begin{align*}
 &\text{FORM} \langle 's \rangle \\
 &\text{SYN} \begin{bmatrix}
 \text{HEAD} | \text{POS} & \text{det} \\
 \text{VAL} & \text{SPR} \langle NP \rangle \\
 & \text{COMPS} \langle \rangle
 \end{bmatrix}
 \end{align*}
\]
Another example tree

(12)

```
(12)  
NP  
  1DP  
   the planet's  
   \[ SPR \langle 1DP \rangle \]  
   \[ COMPS \langle \_ \_ \_ \rangle \]  
   N  
  2PP  
   to the Sun  
   proximity  
   \[ SPR \langle 1DP \rangle \]  
   \[ COMPS \langle 2PP \rangle \]  
```
The core class of pronouns in English includes at least three main subgroups.

(13) a. Personal pronouns: I, you, he, she, it, they, we
 b. Reflexive pronouns: myself, yourself, himself, herself, itself
 c. Reciprocal pronoun: each other, one another
Pronoun-antecedent agreement

- Pronouns participate in agreement relations with their **antecedents**, the phrase to which they are understood to be referring.

 (14) a. President Lincoln delivered **his/her** Gettysburg Address in 1863.

 b. After reading **the pamphlet**, Judy threw **it/them** into the garbage can.

 c. I got worried when **the neighbors** let **their/his** dogs out.

- Reflexive pronouns are special forms which typically are used to indicate a reflexive activity or action, which can include mental activities.

 (15) a. I asked **myself**: why isn’t he here?

 b. Edward usually remembered to send a copy of his e-mail to **himself**.

- These personal or reflexive pronouns neither take a determiner nor combine with an adjective except in very restricted constructions.
Proper nouns

- Because proper nouns usually refer to something or someone unique, they do not normally take a plural form and cannot occur with a determiner.

- However, proper nouns can be converted into countable nouns when they refer to a particular individual or type of individual.

 (17) a. No John Smiths attended the meeting.
 b. This John Smith lives in Seoul.
 c. There are three Davids in my class.
 d. It’s nothing like the America I remember.
 e. She doesn’t come across in the same manner as a Hillary Clinton.
Proper nouns: lexical entries

(18) \[
\begin{align*}
&\text{prpn} \\
&\text{FORM } \langle \text{John Smith} \rangle \\
&a. \quad \begin{bmatrix}
\text{HEAD} & \text{POS} & \text{noun} \\
\text{SYN} & \text{VAL} & \text{SPR} & \langle \rangle \\
& & \text{COMPS} & \langle \rangle
\end{bmatrix} \\
&\text{cn-prpn} \\
&\text{FORM } \langle \text{John Smith} \rangle \\
&b. \quad \begin{bmatrix}
\text{HEAD} & \text{POS} & \text{noun} \\
\text{SYN} & \text{VAL} & \text{SPR} & \langle \text{DP} \rangle \\
& & \text{COMPS} & \langle \rangle
\end{bmatrix}
\end{align*}
\]
No John Smiths attended the meeting
Noun-determiner agreement

- Common nouns in English participate in three types of agreement.
- First, they are involved in determiner-noun agreement.

(20) a. this book/that book
 b. *this books/*that books/these books/those books
 c. *few dog/few dogs

(21) HEAD-SPR CONSTRUCTION:
 \[\text{XP} \rightarrow \text{SPR} \left[\text{AGR} \ 1 \right], \text{H} \left[\text{AGR} \ 1 \right] \]
Noun-determiner agreement: lexical entries

(22)

\[
\begin{align*}
\text{a.} & \quad \text{FORM } \langle a \rangle \\
\text{HEAD} & \quad \text{POS } det \\
\text{AGR | NUM } sing \\
\text{VAL} & \quad \text{SPR } \langle \rangle \\
\text{COMPS} & \quad \langle \rangle \\
\text{b.} & \quad \text{FORM } \langle \text{book} \rangle \\
\text{HEAD} & \quad \text{POS } noun \\
\text{AGR | NUM } sing \\
\text{VAL} & \quad \text{SPR } \langle \text{DP[NUM sing]} \rangle \\
\text{COMPS} & \quad \langle \rangle
\end{align*}
\]
Noun-determiner agreement: example tree

(23)

\[
\begin{align*}
\text{NP} & \quad \text{agr} \mid \text{num} \quad \text{sing} \\
\text{1DP} & \quad \text{num} \quad \text{sing} \\
\text{a} & \quad \text{book}
\end{align*}
\]
Determiners and \textit{NUM} values

In addition, there is nothing preventing a singular noun from combining with a determiner which is not specified at all for a \textit{NUM} value.

(24) a. *those book, *these book,
 b. no book, the book, my book,

(25)

\[
\begin{array}{c}
\text{num} \\
\text{sing} & \text{pl}
\end{array}
\]
A second type of agreement is pronoun-antecedent agreement.

(26) a. In the book, he talks about his ups and downs at McLaren. Throughout it all he seeks to answer the questions about himself.

 b. If John wants to succeed in corporate life, he/*she has to know the rules of the game.

 c. The critique of Plato’s Republic was written from a contemporary point of view. It was an in-depth analysis of Plato’s opinions about possible governmental forms.
Lexical entries with \textit{AGR} values

(27) a. \[
\begin{array}{c}
\text{FORM} \langle \text{book} \rangle \\
\text{SYN} \left[\begin{array}{c}
\text{HEAD} \\
\text{AGR} \\
\text{POS} \text{ noun} \\
\text{PER} \text{ 3rd} \\
\text{NUM} \text{ sing} \\
\text{GEND} \text{ neut}
\end{array} \right] \\
\text{VAL} \left[\begin{array}{c}
\text{SPR} \\
\text{COMPS}
\end{array} \right] \\
\langle \text{DP[NUM sing]} \rangle
\end{array}
\]

b. \[
\begin{array}{c}
\text{FORM} \langle \text{he} \rangle \\
\text{SYN} \left[\begin{array}{c}
\text{HEAD} \\
\text{AGR} \\
\text{POS} \text{ noun} \\
\text{PER} \text{ 3rd} \\
\text{NUM} \text{ sing} \\
\text{GEND} \text{ masc}
\end{array} \right] \\
\text{VAL} \left[\begin{array}{c}
\text{SPR} \\
\text{COMPS}
\end{array} \right] \\
\langle \text{ } \rangle
\end{array}
\]
The third type of agreement is subject-verb agreement.

(28) a. The characters in Shakespeare’s Twelfth Night *lives/live in a world that has been turned upside-down.
 b. Students studying English read/*reads Conrad’s Heart of Darkness while at university.

(29) a. You are/*is the only person that I can rely on.
 b. He is/*are the only person that I can rely on.
(30) a. The boy swims/*swim.
b. The boys swim/*swims.

English verbs will have at least the following selectional information:

(31) \[
\begin{array}{c}
\text{FORM} \left\langle \text{swims} \right\rangle \\
\text{SYN} \\
\text{HEAD} \\
\text{VAL} | \text{SPR} \\
\text{ARG-ST} \left\langle [1]NP \right\rangle \\
\end{array}
\begin{array}{c}
\text{POS} \text{ verb} \\
\text{VFORM} \text{ es} \\
\text{PER} 3rd \\
\text{NUM} \text{ sing} \\
\end{array}
\]
Subject-verb agreement: example tree

(32)

S

[2]NP

AGR [1]

PER 3rd

NUM sing

The boy

VP

HEAD | AGR [1]

PER 3rd

NUM sing

spr ⟨2]NP⟩

V

HEAD | AGR [1]

spr ⟨2]NP⟩

swims
What we have seen so far is that the morphosyntactic \textit{AGR} values of noun or verb can be specified, and may be inherited by phrases built out of them.

However, there are also cases where semantic meanings are important.

(33) a. [The hash browns at table nine] are/*is getting cold.
 b. [The hash browns at table nine] is/*are getting angry.
Semantic **IND** values: lexical entries

(34)
\[
\begin{align*}
\text{a.} & \quad \text{FORM } \langle \text{boy}\rangle \\
& \quad \text{SYN} | \text{HEAD} \begin{cases}
\text{POS } \text{noun} \\
\text{AGR} | \text{NUM } \text{sing}
\end{cases}
\\
& \quad \text{SEM} | \text{IND} | \text{NUM } \text{sing}
\end{align*}
\]

\[
\begin{align*}
\text{b.} & \quad \text{FORM } \langle \text{boys}\rangle \\
& \quad \text{SYN} | \text{HEAD} \begin{cases}
\text{POS } \text{noun} \\
\text{AGR} | \text{NUM } \text{pl}
\end{cases}
\\
& \quad \text{SEM} | \text{IND} | \text{NUM } \text{pl}
\end{align*}
\]

(35)
\[
\begin{align*}
\text{FORM } \langle \text{swims}\rangle \\
& \quad \text{SYN} | \text{HEAD} \begin{cases}
\text{POS } \text{verb} \\
\text{AGR} | \text{NUM } \text{sing}
\end{cases}
\\
& \quad \text{VAL} | \text{SPR} \begin{cases}
\text{NP} \text{[IND} | \text{NUM } \text{sing}]
\end{cases}
\\
& \quad \text{SEM} | \text{IND } \text{s0}
\end{align*}
\]
Semantic IND agreement: example tree

(36)

The boys

\[\begin{array}{c}
\text{NP} \\
\text{IND}_j \quad \begin{array}{c}
\text{PER} \quad 3rd \\
\text{NUM} \quad \text{pl}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{VP} \\
\text{SPR} \quad \begin{array}{c}
\langle 2\text{NP}_i \rangle \\
\text{PER} \quad 3rd \\
\text{NUM} \quad \text{sing}
\end{array}
\end{array} \]

swims
Semantic IND agreement: lexical entries

(37)

\[\begin{align*}
a. \quad & \begin{array}{l}
\text{FORM } \langle \text{hash browns} \rangle \\
\text{SYN } | \text{HEAD} : \begin{array}{l}
\text{POS } \text{noun} \\
\text{AGR } | \text{NUM } \text{pl}
\end{array} \\
\text{SEM } | \text{IND } [1] | \text{NUM } \text{pl}
\end{array} \\
\text{FORM } \langle \text{hash browns} \rangle \\
\text{SYN } | \text{HEAD} : \begin{array}{l}
\text{POS } \text{noun} \\
\text{AGR } | \text{NUM } \text{pl}
\end{array} \\
\text{SEM } | \text{IND } [1] | \text{NUM } \text{sing}
\end{align*} \]

(when referring to the food itself)

(when referring to a customer, or to a dish)
English determiner-noun agreement is merely a reflection of morphosyntactic agreement features between determiner and noun, whereas subject-verb (as well as pronoun-antecedent) agreement is index-based agreement.

(38) Morphosyntactic agreement (\textsc{agr})

\[\text{Det} \quad \text{head-noun} \quad \text{verb} \quad \ldots\]

Index agreement (\textsc{ind})
More on semantic IND agreement: measure nouns

Semantic IND agreement can also be seen in examples involving measure nouns.

(39) [Four pounds] was quite a bit of money in 1950 and it was not easy to come by.

Given the separation of the morphological AGR value and the semantic IND value, nothing blocks mismatches between the two (AGR and IND) as long as all the other constraints are satisfied.

(40) a. [Five pounds] is/*are a lot of money.
 b. [Two drops] deodorizes/*deodorize anything in your house.
 c. [Fifteen dollars] in a week is/*are not much.
 d. [Fifteen years] represents/*represent a long period of his life.
 e. [Two miles] is/*are as far as they can walk.
More on semantic **IND** agreement: measure nouns (cont’d)

(41) \[
\begin{array}{c}
\langle \text{pounds} \rangle \\
\text{SYN} \\
\text{HEAD} \quad \text{POS} \quad \text{noun} \\
\text{AGR} \quad 1 \quad | \quad \text{NUM} \quad \text{pl} \\
\text{VAL} \quad | \quad \text{SPR} \quad \langle \text{DP} \quad \text{AGR} \quad 1 \rangle \\
\text{SEM} \quad | \quad \text{IND} \quad | \quad \text{NUM} \quad \text{sing}
\end{array}
\]
More on semantic **IND agreement**: measure nouns (cont’d)

(42) Five pounds is a lot of money
We can also explain the ungrammaticality of the examples like the following:

(43) a. *These dollars is what I want to donate to the institute.
 b. *These pounds is a lot of money.

There is nothing wrong in forming *these dollars or *these pounds since dollars and pounds can combine with a plural DP (or determiner).

The issue is the agreement between the subject *these dollars and the verb *is.

Unlike *five dollars or *five pounds, *these dollars and *these pounds are semantically not taken to refer to a single unit: they always refer to plural entities.
A similar mismatch between subject and verb is also found in cases with terms for social organizations or collections.

(44) a. [This/these government] has/have broken its promises.
 b. [This/these government] have/has broken their promises.

(45) a. [This/these England team] have/has put themselves in a good position to win the championship.
 b. [This/these England team] *have/has put itself in a good position to win the championship.
More on semantic IND agreement: collective nouns (cont’d)

(46) a.

\[
\begin{align*}
\text{FORM} & \langle \text{this} \rangle \\
\text{SYN} & \text{HEAD} \\
\text{POS} & \text{det} \\
\text{AGR} & \text{NUM sing}
\end{align*}
\]

b.

\[
\begin{align*}
\text{FORM} & \langle \text{team/government} \rangle \\
\text{SYN} & \text{HEAD} \\
\text{POS} & \text{noun} \\
\text{AGR} & \text{NUM sing}
\end{align*}
\]

\[
\begin{align*}
\text{SEM} & \text{IND} \\
\text{NUM} & \text{pl}
\end{align*}
\]
With regard to agreement involving the NP-internal elements, there are two main types of NPs in English: simple NPs and partitive NPs.

(47) a. some objections
b. most students
c. all students
d. much worry
e. many students
f. neither cars

(48) a. some of the objections
b. most of the students
c. all of the students
d. much of her worry
e. many of the students
f. neither of the cars
The lower NP in partitive NPs must be definite.

(49) a. each student vs. each of the students vs. *each of students
 b. some problems vs. some of the problems vs. *some of many problems

Not all determiners with quantificational force can appear in partitive constructions.

(50) a. *the of the students vs. the students
 b. *every of his ideas vs. every idea
 c. *no of your books vs. no book(s)
Simple NPs vs. partitive NPs (cont’d)

Simple NPs and partitive NPs have different restrictions relative to the semantic head.

(51) a. She doesn’t believe much of that story.
 b. We listened to as little of his speech as possible.
 c. How much of the fresco did the flood damage?
 d. I read some of the book.

(52) a. *She doesn’t believe much story.
 b. *We listened to as little speech as possible.
 c. *How much fresco did the flood damage?
 d. *I read some book.
Another difference concerns lexical idiosyncrasies.

(53) a. One of the people was dying of thirst.
 b. Many of the people were dying of thirst.

(54) a. *One people was dying of thirst.
 b. Many people were dying of thirst.
Two types of partitive NPs

- We classify partitive NPs into two types based on the agreement facts.
- In Type I, the number value of the partitive phrase depends on the preceding head noun, whereas in Type II, the number value depends on the head noun inside of the of-NP phrase.

(55) Type I:
 a. Each of the suggestions is acceptable.
 b. Neither of the cars has air conditioning.
 c. None of these men wants to be president.

(56) Type II:
 a. Most of the fruit is rotten.
 b. Most of the children are here.
 c. Some of the soup needs more salt.
 d. Some of the diners need menus.
 e. All of the land belongs to the government.
 f. All of these cars belong to me.
Generalizations

Type I and Type II involve pronominal forms serving as the head of the construction, which select an of-NP inside which the NP is definite.

(57) a. *neither of students, *some of water
 b. neither of the two linguists/some of the water

The two types are different in terms of agreement: the pronouns in the Type I construction are lexically specified to be singular whereas the number value for Type II comes from inside the selected PP.
A slight digression is in order. It is easy to see that there are prepositions whose functions are just grammatical markers.

(58) a. John is in the room.
 b. I am fond of him.
(59) a. \[
\begin{align*}
\text{FORM } & \langle \text{neither} \rangle \\
\text{HEAD} & \begin{bmatrix}
\text{POS} & \text{noun} \\
\text{AGR} & | \text{NUM} & \text{sing}
\end{bmatrix} \\
\text{SYN} & \begin{bmatrix}
\text{VAL} & | \text{COMPS} & \langle \text{PP} & \begin{bmatrix}
\text{PFORM} & \text{of} \\
\text{DEF} & + \\
\text{AGR} & | \text{NUM} & 1
\end{bmatrix} & \rangle
\end{bmatrix}
\end{align*}
\]

b. \[
\begin{align*}
\text{FORM } & \langle \text{some} \rangle \\
\text{HEAD} & \begin{bmatrix}
\text{POS} & \text{noun} \\
\text{AGR} & | \text{NUM} & 1
\end{bmatrix} \\
\text{SYN} & \begin{bmatrix}
\text{VAL} & | \text{COMPS} & \langle \text{PP} & \begin{bmatrix}
\text{PFORM} & \text{of} \\
\text{DEF} & + \\
\text{AGR} & | \text{NUM} & 1
\end{bmatrix} & \rangle
\end{bmatrix}
\end{align*}
\]
Partitives: example trees

(60) a.

```
NP[NUM sing]
   |
N[NUM sing]  PP
   |
  neither
   |
P
```

b.

```
NP[NUM 1]
   |
N[NUM 1]  PP[NUM 1]
   |
some
   |
P
```

```
NP[NUM 1]
   |
P
```
We can check a few of the consequences of these different specifications in the two types of partitive NPs.

(61) a. many of the/those/her apples
 b. *many of some/all/no apples
This system also offers a simple way of dealing with the fact that quantifiers like *each* affect the *NUM* value as well as the countability of the *of-NP* phrase.

(62) **Type I:**
 a. one of the suggestions/*the suggestion/*his advice
 b. each of the suggestions/*the suggestion/*his advice
 c. neither of the students/*the student/*his advice

(63) **Type II:**
 a. some of his advice/students
 b. most of his advice/students
 c. all of his advice/students

(64) \[
\begin{array}{l}
\text{FORM} \left\langle \text{each} \right\rangle \\
\text{HEAD} \left[\text{POS \, noun} \right. \\
\text{AGR} | \text{NUM \, sing} \\
\text{SYN} \\
\text{VAL} | \text{COMPS} \left(\text{PP} \left[\text{PFORM \, of} \right. \\
\text{DEF} + \right. \\
\text{NUM \, pl} \left\rangle \right) \right. \\
\end{array}
\]
Type II pronouns do not place such a requirement on the PP complement.

(65) a. Most of John’s boat has been repainted.
 b. Some of the record contains evidence of wrongdoing.

(66) a. *Each of John’s boat has been repainted.
 b. *Many of the record contained evidence of wrongdoing.
 c. *One of the story has appeared in your newspaper.
We are also in a position now to understand some differences between simple NPs and partitive NPs.

(67) a. many dogs/*much dog/the dogs
 b. much furniture/*many furniture/the furniture

(68) a. few dogs/*few dog/*little dogs/*little dog
 b. little furniture/*little furnitures/*few furniture/*few furnitures

The data here indicate that in addition to the agreement features we have seen so far, common nouns also place a restriction on the countability value of the selected specifier. Specifically, a countable noun selects a countable determiner as its specifier.
To capture this agreement restriction, we can introduce a new feature COUNT (countable).

(69) \[
\begin{align*}
\text{a.} & \quad \text{FORM } \langle \text{dogs} \rangle \\
\text{SYN} & \quad \text{HEAD } \mid \text{POS } \text{noun} \\
& \quad \text{VAL } \mid \text{SPR } \langle \text{DP}[\text{COUNT }+] \rangle
\end{align*}
\]

(70) \[
\begin{align*}
\text{a.} & \quad \text{FORM } \langle \text{many} \rangle \\
\text{SYN} & \quad \text{HEAD } \mid \text{POS } \text{det} \\
& \quad \text{COUNT } + \\
& \quad \text{FORM } \langle \text{little} \rangle \\
\text{SYN} & \quad \text{HEAD } \mid \text{POS } \text{det} \\
& \quad \text{COUNT } -
\end{align*}
\]

\[
\begin{align*}
\text{b.} & \quad \text{FORM } \langle \text{furniture} \rangle \\
\text{SYN} & \quad \text{HEAD } \mid \text{POS } \text{noun} \\
& \quad \text{VAL } \mid \text{SPR } \langle \text{DP}[\text{COUNT }-] \rangle
\end{align*}
\]

\[
\begin{align*}
\text{b.} & \quad \text{FORM } \langle \text{the} \rangle \\
\text{SYN} & \quad \text{HEAD } \mid \text{POS } \text{det} \\
& \quad \text{COUNT boolean}
\end{align*}
\]
COUNT feature (cont’d)

(71) a. much advice vs. *many advice
 b. *much story vs. many stories

(72) a. much of the advice vs. *many of the advice
 b. much of the story vs. many of the stories
(73) a. \[\begin{array}{c}
\text{FORM} \langle \text{many} \rangle \\
\text{HEAD} \mid \text{POS} \textit{noun} \\
\text{SYN} \langle \text{PP} \rangle \\
\text{VAL} \mid \text{COMPS} \\
\text{PP} \langle \text{PFORM} \textit{of} \rangle \\
\text{NUM} \textit{pl} \\
\text{DEF} +
\end{array} \]

b. \[\begin{array}{c}
\text{FORM} \langle \text{much} \rangle \\
\text{HEAD} \mid \text{POS} \textit{noun} \\
\text{SYN} \langle \text{PP} \rangle \\
\text{VAL} \mid \text{COMPS} \\
\text{PP} \langle \text{PFORM} \textit{of} \rangle \\
\text{NUM} \textit{sing} \\
\text{DEF} +
\end{array} \]
There are also so-called ‘measure noun phrase’ constructions, which are similar to partitive constructions.

(74) a. one pound of those beans
 b. three feet of that wire
 c. a quart of Bob’s cider

(75) a. one pound of beans
 b. three feet of wire
 c. a quart of cider

Notice here that (74) is a kind of partitive construction whereas (75) measures the amount of the NP after of.
Differences between measure NPs and partitive NPs

- Measure noun phrases do not require a definite article, unlike the true partitive constructions.

 (76) *many of beans, *some of wire, *much of cider, *none of yogurt, *one of strawberries

- Measure nouns cannot occur in simple noun phrases. They obligatorily require an *of-NP phrase.

 (77) a. *one pound beans vs. one pound of beans
 b. *three feet wire vs. three feet of wire
 c. *a quart cider vs. a quart of cider
Differences between measure NPs and partitive NPs (cont’d)

- Unlike partitive constructions, measure noun phrases require a numeral (or a certain determiner) as their specifier:

 (78) a. *one many of the books, *several much of the beer
 b. one pound of beans, three feet of wire

- Further complications arise owing to the existence of defective measure noun phrases.

 (79) a. *a can tomatoes/a can of tomatoes/one can of tomatoes
 b. a few suggestions/*a few of suggestions/*one few of suggestions
 c. *a lot suggestions/a lot of suggestions/*one lot of suggestions
Agreement on measure NPs

Regarding agreement, measure noun phrases behave like Type I partitive constructions.

(80) a. A can of tomatoes is/*are added.
 b. Two cans of tomatoes are/*is added.

(81) \[
\begin{array}{c}
\text{FORM } \langle \text{pound} \rangle \\
\text{HEAD} \begin{bmatrix}
\text{POS } \text{noun} \\
\text{NUM } \text{sing}
\end{bmatrix} \\
\text{SYN} \begin{bmatrix}
\text{SPR } \langle \text{DP} \rangle \\
\text{VAL} \begin{bmatrix}
\text{COMPS } \langle \text{PP}\left[\text{PFORM of}\right]\rangle
\end{bmatrix}
\end{bmatrix}
\end{array}
\]
Adjective as prenominal modifiers

Even though most adjectives can be used either as a modifying (attributive) function or as a predicate (as in *She is tall*), certain adjectives are restricted in their usages.

(82) a. He is alive.
 b. He is afraid of foxes.

(83) a. It is a wooden desk.
 b. It is a golden hair.
 c. It is the main street.

(84) a. *It is an alive fish. (cf. living fish)
 b. *They are afraid people. (cf. nervous people)

(85) a. *This objection is main. (cf. the main objection)
 b. *This fact is key. (cf. a key fact)
Predicative adjectives carry the feature \textsc{pred}, and have a \textsc{mod} value that is empty as a default.

\begin{math}
\text{(86)} \quad \begin{bmatrix}
\text{FORM} & \langle \text{alive} \rangle \\
\text{SYN} | \text{HEAD} & \begin{bmatrix}
\text{POS} & \text{adj} \\
\text{PRED} & + \\
\text{MOD} & \langle \rangle
\end{bmatrix}
\end{bmatrix}
\end{math}

In contrast to a predicative adjective, a modifying adjective will have a non-empty \textsc{mod} value.

\begin{math}
\text{(87)} \quad \begin{bmatrix}
\text{FORM} & \langle \text{wooden} \rangle \\
\text{SYN} | \text{HEAD} & \begin{bmatrix}
\text{POS} & \text{adj} \\
\text{MOD} & \langle \text{N'} \rangle
\end{bmatrix}
\end{bmatrix}
\end{math}
Adjective as prenominal modifiers: example tree

(88)

```
(88)  
/\   
|  \  
NP  
/\   
|  \  
DP  N'
   /\   
  |  \  
AP  
/\   
|  \  
MOD 1
  /\  
|  \  
wooden
```

```
/\   
|  \  
N'
/\   
|  \  
SPR 2
  /\  
|  \  
desk
```

Syntactic Constructions

Chapter 6
Postnominal modifiers

Postnominal modifiers are the same as prenominal modifiers with respect to what they modify. The only difference is that they follow the expression they modify.

Various phrases can function as such postnominal modifiers.

(89) a. [The girl [in the doorway]] waved to her father.
 b. [The woman [eager to start the meeting]] is my sister.
 c. [The man [holding the bottle]] disappeared.
 d. [The papers [removed from the safe]] have not been found.
 e. [The money [that you gave me]] disappeared last night.
Postnominal modifiers: example tree

(90)

```
(2) DP
   the
     [SPR ⟨2⟩DP]
       [1]N'
         [SPR ⟨2⟩DP]
           girl

NP
  N'
    [SPR ⟨2⟩DP]
      PP
        [MOD ⟨1⟩]
          in the doorway
```
These modifiers must modify an N’, but not a complete NP.

(91) a. *John in the doorway waved to his father.
 b. *He in the doorway waved to his father.
Postnominal VP modifiers: example tree

- Note that the postnominal VP also functions to modify the preceding nominal expression.

(92)

\[
\begin{array}{c}
\text{NP} \\
\text{DP} \quad \text{N}^{' \langle 2 \text{DP} \rangle} \\
\text{SPR} \\
\text{the} \quad \text{man} \\
\text{holding the bottle}
\end{array}
\]
We first discussed the key grammatical properties of three major classes of nouns in English: common nouns, pronouns, and proper nouns. We saw that the lexical properties of these nouns determine their syntactic structures.

We then examined three types of agreement relationships in English: noun-determiner, pronoun-antecedent, and subject-verb agreement.

We saw that the agreement relationship between a noun and its determiner concerns number (\textsc{num}) features of the two, while that between a pronoun and its antecedent involves all the three morphosyntactic agreement (\textsc{agr}) features: person (\textsc{per}), number (\textsc{num}), and gender (\textsc{gend}).
Meanwhile, the subject-verb agreement relationship depends not only on morphosyntactic agreement (\(\text{AGR}\)) features but also on the semantic index (\(\text{IND}\)) feature, whose value in the case of noun is a variable assigned to an individual. This hybrid agreement framework offers us a streamlined analysis of mismatches that involve the \(\text{NUM}\) value of the subject and that of the verb.

Moreover, we noted that partitive NPs can be classified into two different types in accordance with their agreement facts, and further that these differences fall out from lexical specifications of the two types of partitive nouns and also offered a brief analysis of measure NPs.