Orientation of carbon nanotubes in a sheared polymer melt

E. K. Hobbie, H. Wang, H. Kim, and S. Lin-Gibson
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

E. A. Grulke
Advanced Carbon Materials Center, University of Kentucky, Lexington, Kentucky 40506

(Received 6 August 2002; accepted 29 January 2003; published 2 April 2003)

Optical measurements of the shear response of semidilute dispersions of polymer-dispersed multiwalled carbon nanotubes are presented. For a weakly elastic polymer melt, the data suggest that the semiflexible tubes orient along the direction of flow at low shear stress, with a transition to vorticity alignment above a critical shear stress, \(\sigma_c \), corresponding to a critical Deborah number of approximately 0.15. In contrast, data for a highly elastic polymer solution suggest that the tubes orient with the flow field at high shear rates, in the limit of large Deborah number. The measurements are in qualitative agreement with previous experimental and theoretical studies of fiber orientation in elastic fluids under simple shear flow. © 2003 American Institute of Physics. DOI: 10.1063/1.1562161

INTRODUCTION

Nanocomposite materials engineered from polymers and carbon nanotubes offer the promise of polymer composites with greatly enhanced electrical, thermal, optical, and structural properties. As inorganic filler in a polymer matrix, the anisotropy of carbon nanotubes makes them structurally unique, in that the tube diameter can be the same order of magnitude as the radius of gyration of the polymer, \(g \), yet the aspect ratio of the tubes can be exceptionally large, \(a \), while the tubes themselves can exhibit extreme mechanical strength. For any type of extrusion or mechanical mixing process that one might envision, efficient bulk processing of nanotube–polymer composites will depend in part on a detailed understanding of the response of polymer–nanotube melts to simple steady shear flow. Of particular interest are how the shear flow orients the semiflexible nanotubes, which are essentially microscopic fibers, and how this orientation depends on the elasticity of the host polymeric fluid and hydrodynamic tube–tube interactions.

A theoretical treatment of a rigid rod under simple shear flow in a viscous fluid gives the so-called “Jeffery orbit” in which the rod undergoes a precession about the vorticity axis. The orbits are characterized by an orbit constant \(C \) describing the shape of the trajectory, where \(C=0 \) corresponds to perfect alignment along the vorticity axis and \(C=\infty \) corresponds to circular rotation within the flow-gradient plane. For isolated rods, \(C \) is not uniquely determined by the shear rate, but depends on the initial conditions. The particle aspect ratio, which for nanotubes is potentially quite large, is also an important factor in the analysis of such motions, and we note that for very long slender rods, the majority of the orbit is predicted to be spent aligned with the flow field. For a suspension of such particles, the dilute limit is defined as \(nL^3<1 \), where \(n \) is the number of particles per unit volume and \(L \) is the fiber length. Observations of particle motion in dilute rod-like suspensions under shear suggest a director distribution that appears broadly peaked around the flow direction when viewed in the flow-vorticity plane. In both dilute and semidilute suspensions (where the latter is defined by \(nL^3>1 \) and \(nL^2d<1 \), where \(d \) is the fiber diameter), the role of hydrodynamic interactions in determining the distribution of orbit constants, and hence the overall orientation of the fibers, has been studied and clarified both computationally and experimentally. In the semi-dilute regime of interest, hydrodynamic tube–tube interactions are significant.

Although the above observations apply to semidilute dispersions in purely viscous fluids, the scenario for fibers suspended in a viscoelastic polymer melt is somewhat different. For fibers suspended in a weakly elastic fluid, both theory and experiment appear to be consistent with shear-induced orientation along the vorticity axis, while fibers in suspended in highly elastic fluids tend to align along the flow direction under strong shear. An interesting question is the extent to which the shear response of nanotubes in a viscoelastic melt is identical to that of macroscopic fibers, which can be up to three orders of magnitude larger in diameter. In this paper, we present optical measurements of the shear response of semidilute suspensions of polymer-dispersed (non-Brownian) multiwalled carbon nanotubes. For a weakly elastic polymer melt, the data suggest that tubes orient along the direction of flow at low shear stress, with a transition to broad vorticity alignment above a critical shear stress, \(\sigma_c \), corresponding to a Deborah number of approximately 0.15. In contrast, data for a highly elastic polymer solution suggest that the tubes orient along the flow direction in the limit of strong shear. In both the weakly and highly elastic limits, the measurements are in qualitative agreement with previous experimental and theoretical studies of fiber orientation in elastic fluids under simple shear.
MATERIALS AND METHODS

Details of the optical technique applied to multiwalled carbon nanotube (MWNT) suspensions under shear, as well as details of the MWNT growth procedure, will be discussed elsewhere, and here we give a brief overview. A typical electron micrograph of the nanotubes is shown in Fig. 1. Based on such measurements, the tubes have a mean diameter $d \approx 50 \, \text{nm}$ with $M_w/M_n = 1.10$, and based on optical microscopy measurements (200× magnification, after polymer dispersion), the tubes have a mean length $L \approx 12 \, \text{μm}$ with $M_w/M_n = 1.84$. The data shown here are for tubes in polybutadiene (PB) of molecular weight $M_n = 5.1 \times 10^4$, with $M_w/M_n = 1.04$, but we have also measured the shear response of MWNT-dispersions in elastic Boger fluids of low-molecular-weight ($M_n = 800$) polyisobutylene (PIB) containing 0.1% by mass high-molecular-weight ($M_n = 10^6$) PIB. To disperse the tubes in a polymeric fluid, we dissolved 2 g of low-molecular-weight succinimide dispersant in 600 ml of toluene and mechanically mixed in 2 g of nanotubes. This solution was then sonicated for 30 min, after which aggregates and impurities were allowed to settle out. The PB and PIB are soluble in toluene, and 1.7 mass fraction antioxidants were added to the toluene and mechanically mixed in 0.05 mass fraction Good-year Wingstay #29 antioxidant in the case of PB) in the MWNT/toluene suspensions. The polymer solutions were then stirred for 24 h and the solvent removed. The final dispersions are semidilute, with $nL^3 = 54$ and $nL^2d = 0.23$.

The shear light-scattering/microscopy instrument is described in detail elsewhere. The flow direction is along the x axis, the gradient direction is along the y axis, and the vorticity direction is along the z axis. The measurements are taken in the x-y plane. The sample is placed between two quartz plates, the upper of which rotates at a controlled angular speed. The gap between the plates was varied between 200 and 400 μm, and the rotation speed was controlled to vary the shear rate, $\dot{\gamma} = \partial v_x/\partial y$, at a fixed point of observation 2 cm from the center of the 4 cm (radius) plates, where the local flow is simple shear. A Rheometrics Scientific Ares rheometer in a cone-and-plate geometry (0.1 rad cone angle, gap=0.05 mm) was used for steady-shear measurements of the viscosity (η), shear stress (σ_y), and first normal stress difference (N_1). A Rheometrics Scientific SR-5000 rheometer in parallel-plate geometry (gap=0.4 mm) was used for dynamic measurements of $G'(\omega)$ and $G''(\omega)$, the storage and loss modulus of the melt, respectively, as a function of angular frequency, ω. All measurements were performed with 25 mm diameter fixtures, the temperature was controlled to ±0.5 K, and the measurements were carried out under a nitrogen atmosphere to limit any thermal degradation of the polymers. The Reynolds number of the flow is $Re = \dot{\gamma} \ell^2/\eta$, where ℓ is the width of the gap, and ρ and η are the density and viscosity, respectively, of the polymer. At the highest $\dot{\gamma}$ and lowest η encountered, we estimate that $Re < 3 \times 10^{-3}$ and inertial effects are negligible.

Steady-shear rheology data at $T = 80 \, ^\circ\text{C}$ for both a pure PB melt and a 0.17% MWNT by mass PB melt are shown in Fig. 2. The tubes are semi-flexible nanofibers with an extremely large aspect ratio, a persistence length on the order of 1–10 μm, and an average diameter of 50 nm.
of 1–10 μm), small-angle light scattering (λ=632.8 nm) is ideal for probing the structure and orientation of the tubes over the range of scattered wave vector 0.5 μm⁻¹ < q < 5 μm⁻¹, corresponding to the range of length scales 100 nm < 2π/q < 12 μm. The tubes are optically anisotropic, and we thus employ depolarized light scattering, with the polarization of the incident beam denoted s and the polarization of the analyzer p. In this study we measure the four configurations hh(s=ŷ, p=ẑ), vv(s=ẑ, p=ŷ), hv(s=ẑ, p=ŷ), and vh(s=ŷ, p=ẑ), where ŷ and ź define the flow and vorticity directions, respectively. Explicitly, the four structure factors are

\[S_{hh}(q) \propto \sum_{k} \left[\delta(\hat{n}_k \cdot \hat{x})^2 + (\alpha - \frac{1}{2} \delta) e^{i\mathbf{q} \cdot \mathbf{r}_k} f_k(q) \right]^2, \]

\[S_{vv}(q) \propto \sum_{k} \left[\delta(\hat{n}_k \cdot \hat{z})^2 + (\alpha - \frac{1}{2} \delta) e^{i\mathbf{q} \cdot \mathbf{r}_k} f_k(q) \right]^2, \]

\[S_{hv}(q) = S_{vh}(q) \propto \sum_{k} \delta(\hat{n}_k \cdot \hat{x})(\hat{n}_k \cdot \hat{z}) e^{i\mathbf{q} \cdot \mathbf{r}_k} f_k(q) \]

where the index k runs over all of the tubes in the suspension, with \(\mathbf{r}_k \) and \(\hat{n}_k \) denoting the centroid and mean director, respectively, of the kth tube. The amplitude \(f_k(q) \) is somewhat broadly peaked around \(\hat{\mathbf{x}} \), contains information about the effective shape of the tubes. We assume that \(\alpha \) and \(\delta \) are homogeneous throughout the sample. From the above expressions, we see that the hh scattering intensity is sensitive to orientation of the tubes along the flow direction, the vv intensity is sensitive to orientation of the tubes along the vorticity direction, and the hv (vh) intensity is sensitive to orientation of the tubes at 45° in the flow-vorticity plane. When confined to the 200–400 μm gap of the optical shear cell, the melts appear transparent dark gray. Digital video microscopy is simultaneously employed to obtain real-space micrographs (width =200 μm) in which the tubes appear as faint anisotropic dark regions that provide an additional measure of orientation.

RESULTS AND DISCUSSION

Figure 3 shows optical data for a dilute PB/MWNT melt (1.7×10⁻³ mass fraction MWNT) at T=40 °C and \(\dot{\gamma} =0.02 \text{ s}^{-1} \), where the width of the micrograph is 100 μm. The anisotropy is weak, and the shape of the hh and vv scattering patterns are nearly related by a 90° rotation about the gradient (γ) direction. The hv and vh patterns are nearly symmetric 4-lobe shaped, with the 45° axis being characteristic of an isotropic director distribution. Tubes in the focal plane appear as faint, dark, anisotropic shapes in the optical micrographs. Figure 4 shows optical data for the melt depicted in Fig. 3 at \(\dot{\gamma} =1.0 \text{ s}^{-1} \). Orientation of the tubes along the flow direction is evident in the anisotropy of the hh and vv patterns and the orientation of shadow patterns in the optical micrographs. With most of the tubes aligned along ŷ, the vv pattern in Fig. 4 reflects scattering from the component of tube orientation along ź, suggesting structure that is somewhat broadly peaked around ŷ.

To infer information about the orientation of the nanotubes from the vv light-scattering patterns, we consider projections of these structure factors along the flow (x) and vorticity (z) directions. There are then four characteristic length scales contained in the hh and vv scattering patterns; \(\xi_{hx}, \xi_{hz}, \xi_{ux}, \) and \(\xi_{uz} \). To extract these, we fit the data to \(S(q_x)\approx S(0)\exp(-\xi_{hx}^2 q_x^2) \) in the low-q limit, and Fig. 6 shows the four length scales as a function of \(\dot{\gamma} \) for the 1.7×10⁻³ mass fraction MWNT PB melt at (a) 40 °C, (b) 80 °C, and (c) 120 °C. For the hh pattern, orientation of the
tubes along the flow direction leads to a decrease in ξ_{hh}, while $\xi_{h\tau}$ remains saturated at around 0.7 μm. For the vv pattern, orientation of the tubes along the direction of flow is apparent as a shear-induced increase in $\xi_{v\tau}$ and a shear-induced decrease in $\xi_{v\tau}$, and a shear-induced increase in $\xi_{h\tau}$ and $\xi_{v\tau}$, which occurs at higher shear rates as the temperature increases. Plotting the correlation lengths ξ_{hh} and $\xi_{h\tau}$ as a function of Deborah number for all of the temperatures superimposes the transitions, as shown in Fig. 7, and reveals the transition to vorticity alignment. The orientation of the scattering lobes thus evolves toward the vorticity direction is evident in the anisotropy of the hh and vv patterns, and in the orientation of the intensity lobes in the hv and vh patterns. The mean orientation of the tubes is also evident in the micrograph. The geometry is the same as that in Fig. 3 and the width of the micrograph is 100 μm.

Information about the orientation of the tubes is also contained in the angles locating the lobes of maximum intensity in $S_{hh}(q)$ and $S_{vv}(q)$, which we denote ϕ. From a relatively crude but effective model consisting of two-dimensional (2D) rectangular shapes in the x-z plane, one can easily derive the simple but general relation $\phi = \pm (\pi/2 - \theta_m) \pm n\pi (n = 0,1,2,...)$, where the angle θ_m locates the maximum in the effective probability distribution function $p(\theta) \sin^2 \theta \cos^2 \theta$. Here, $p(\theta)$ is a tilt-angle distribution function, with θ defined as the angle between the projection of the tube director into the x-z plane and the flow (x) direction. For an isotropic system [$p(\theta) =$ const], the maxima thus occur at odd multiples of 45°, as noted above. Figure 8(a) shows the angle $\theta_m(\gamma)$ inferred from the hv and vh light-scattering data for the 0.17% MWNT by mass PB melt at each of the three temperatures, where the inset shows the vh pattern at $\dot{\gamma} = 0.02$ s$^{-1}$ and $T = 40^\circ C$, with the angles θ_m and ϕ as indicated. As the tubes orient with the flow direction, the orientation of the scattering lobes thus evolves toward the vorticity direction, and as the tubes align with the vorticity axis, the scattering lobes move toward the flow direction, reflecting the inverted nature of the response in q-space. The effect of varying temperature is clearly evident at the four highest shear rates in Fig. 8(a), where the shear rate at which θ_m becomes larger than $\pi/4$ increases with increasing temperature. Multiplying $\dot{\gamma}$ by the viscosity converts the horizontal axis in Fig. 8(a) to shear stress [Fig. 8(b)] and collapses the positive slope data for all three temperatures into a
single trend. These measurements also suggest that the transition to vorticity alignment occurs at a critical shear stress \(s_c \) of approximately 10–15 kPa. Converting the horizontal axis in Fig. 8(a) to De has the same effect, as shown in Fig. 8(b).

Turning now to the real-space data provided by the optical micrographs, Fig. 9(a) shows the tilt-angle distribution functions, \(p(\theta) \), obtained for conditions above and below the transition from flow to vorticity alignment. The histograms have been made symmetric with respect to \(\theta = 90^\circ \) to eliminate slight residual anisotropy in the ensembles, which contain on the order of 4000 individual tube shapes. The angles are obtained by finding the axis of least-moment-of-inertia for each of the shapes representing distinct nanotubes in the micrographs. Based on these distributions, the effective probability distributions relevant to the \(hh \) and \(vv \) scattering, \(\rho(\theta) \sin^2 \theta \cos^2 \theta \), are easily computed and are shown in Fig. 9(b). The dark triangles indicate the locations of the maxima, \(\theta_m \), suggested by the analysis of the \(hh \) and \(vv \) light-scattering patterns discussed above. The transition to vorticity alignment at high shear stress is clearly evident in Fig. 9(a) as a shift in the position of the most probable tilt angle, and in Fig. 9(b) as a shift in the peak position with respect to \(\pi/4 \). As mentioned above, the data suggest that the director distribution at high shear stress is actually weakly bimodal, as evidenced by a vertical stripe in the \(hh \) scattering pattern in Fig. 5 and weak secondary maxima in \(p(\theta) \) at \(\theta = 0 \) and \(\pi \) [Fig. 9(a)]. Based on optical images obtained at different focal depths in the vicinity of the bottom (stationary) plate, we attribute this to wall effects; tubes very close to the bottom wall exhibited a tendency to be aligned with the flow direction, even when tubes in the bulk tend to exhibit vorticity elongation.

CONCLUSIONS

Optical measurements of the shear response of semidilute ensembles of multi-walled carbon nanotubes dispersed in a weakly elastic polymer are presented and discussed. Below a critical shear stress \((\sigma_c) \) of approximately 10–15 kPa. Converting the horizontal axis in Fig. 8(a) to \(De \) has the same effect, as shown in Fig. 8(c).

Turning now to the real-space data provided by the optical micrographs, Fig. 9(a) shows the tilt-angle distribution functions, \(p(\theta) \), obtained for conditions above and below the transition from flow to vorticity alignment. The histograms have been made symmetric with respect to \(\theta = 90^\circ \) to eliminate slight residual anisotropy in the ensembles, which contain on the order of 4000 individual tube shapes. The angles are obtained by finding the axis of least-moment-of-inertia for each of the shapes representing distinct nanotubes in the micrographs. Based on these distributions, the effective probability distributions relevant to the \(hh \) and \(vv \) scattering, \(\rho(\theta) \sin^2 \theta \cos^2 \theta \), are easily computed and are shown in Fig. 9(b). The dark triangles indicate the locations of the maxima, \(\theta_m \), suggested by the analysis of the \(hh \) and \(vv \) light-scattering patterns discussed above. The transition to vorticity alignment at high shear stress is clearly evident in Fig. 9(a) as a shift in the position of the most probable tilt angle, and in Fig. 9(b) as a shift in the peak position with respect to \(\pi/4 \). As mentioned above, the data suggest that the director distribution at high shear stress is actually weakly bimodal, as evidenced by a vertical stripe in the \(hh \) scattering pattern in Fig. 5 and weak secondary maxima in \(p(\theta) \) at \(\theta = 0 \) and \(\pi \) [Fig. 9(a)]. Based on optical images obtained at different focal depths in the vicinity of the bottom (stationary) plate, we attribute this to wall effects; tubes very close to the bottom wall exhibited a tendency to be aligned with the flow direction, even when tubes in the bulk tend to exhibit vorticity elongation.

CONCLUSIONS

Optical measurements of the shear response of semidilute ensembles of multi-walled carbon nanotubes dispersed in a weakly elastic polymer are presented and discussed. Below a critical shear stress \((\sigma_c) \) of approximately 10–15 kPa. Converting the horizontal axis in Fig. 8(a) to \(De \) has the same effect, as shown in Fig. 8(c).

Turning now to the real-space data provided by the optical micrographs, Fig. 9(a) shows the tilt-angle distribution functions, \(p(\theta) \), obtained for conditions above and below the transition from flow to vorticity alignment. The histograms have been made symmetric with respect to \(\theta = 90^\circ \) to eliminate slight residual anisotropy in the ensembles, which contain on the order of 4000 individual tube shapes. The angles are obtained by finding the axis of least-moment-of-inertia for each of the shapes representing distinct nanotubes in the micrographs. Based on these distributions, the effective probability distributions relevant to the \(hh \) and \(vv \) scattering, \(\rho(\theta) \sin^2 \theta \cos^2 \theta \), are easily computed and are shown in Fig. 9(b). The dark triangles indicate the locations of the maxima, \(\theta_m \), suggested by the analysis of the \(hh \) and \(vv \) light-scattering patterns discussed above. The transition to vorticity alignment at high shear stress is clearly evident in Fig. 9(a) as a shift in the position of the most probable tilt angle, and in Fig. 9(b) as a shift in the peak position with respect to \(\pi/4 \). As mentioned above, the data suggest that the director distribution at high shear stress is actually weakly bimodal, as evidenced by a vertical stripe in the \(hh \) scattering pattern in Fig. 5 and weak secondary maxima in \(p(\theta) \) at \(\theta = 0 \) and \(\pi \) [Fig. 9(a)]. Based on optical images obtained at different focal depths in the vicinity of the bottom (stationary) plate, we attribute this to wall effects; tubes very close to the bottom wall exhibited a tendency to be aligned with the flow direction, even when tubes in the bulk tend to exhibit vorticity elongation.

FIG. 6. The four characteristic length scales determined from the \(hh \) and \(vv \) light-scattering patterns (\(\xi_{hh} \), \(\xi_{hz} \), and \(\xi_{vx} \)) as a function of shear rate for a PB/MWNT melt prepared at \(1.7 \times 10^{-3} \) mass fraction MWNT at temperatures of (a) 40 °C, (b) 80 °C, and (c) 120 °C. The transition from flow alignment to vorticity alignment is apparent as a shear-induced decrease in \(\xi_{hh} \) and \(\xi_{vx} \), and a shear-induced increase in \(\xi_{hz} \) and \(\xi_{vz} \).

FIG. 7. A universal plot of the two correlation lengths \(\xi_{hh} \) and \(\xi_{hz} \) as a function of Deborah number for the three temperatures considered, where the transition to vorticity alignment emerges in the vicinity of \(De \approx 0.15 \). Universal plots as a function of shear stress look similar, and suggest the transition occurs at 10–15 kPa.
formed at 25 °C, are complicated by the fact that the viscosity of the PIB fluid is low enough for weak shear to induce aggregation of the non-Brownian nanofibers, the microscale analog of a phenomenon frequently encountered in the processing of fiber suspensions. Although details of this flow-induced aggregation will be discussed in detail elsewhere, we note here that above a shear stress of around 300 Pa, the MWNT aggregates start to “melt,” and optical measurements of the orientation of individual tubes in semidilute suspensions under such conditions are similar to those de-

FIG. 8. (a) The angle \(\theta_m \) as a function of shear rate for the 1.7\(\times 10^{-3} \) mass fraction MWNT sample under consideration, where \(\theta_m = 45^\circ \) corresponds to an isotropic configuration. The inset shows the \(\nu h \) light-scattering pattern at \(\gamma = 0.02 \) s\(^{-1} \), with the angles \(\theta_m \) and \(\phi \) as indicated. With increasing temperature, the transition from flow alignment to vorticity alignment occurs at higher shear rate, reflecting the decreased viscosity of the PB matrix. (b) The same data plotted as a function of shear stress, and (c) the same data plotted as a function of Deborah number.

FIG. 9. (a) Tilt-angle distribution functions, \(\rho(\theta) \), determined from the optical micrographs for the melt depicted in Figs. 3–5 (1.7\(\times 10^{-3} \) mass fraction MWNT, \(T = 40^\circ \) C). The histograms have been made symmetric with respect to \(\theta = 90^\circ \) to eliminate very weak residual anisotropy in the ensembles. (b) Effective probability distributions relevant for the \(h v \) and \(\nu h \) light-scattering patterns based on the real-space distributions shown in (a). The dark triangles indicate the location of the maxima suggested by the \(h v \) and \(\nu h \) light-scattering patterns.

FIG. 10. Light-scattering patterns for a PIB/MWNT dispersion (1.7\(\times 10^{-3} \) mass fraction MWNT, \(T = 25^\circ \) C) at a shear rate of 100 s\(^{-1} \) (De ~10). Orientation of the tubes along the flow direction is evident in the anisotropy of the \(hh \) and \(vv \) patterns, and in the orientation of the intensity lobes in the \(hv \) and \(vh \) patterns. The geometry is the same as that depicted in Fig. 4.
picted in Fig. 4, suggesting flow alignment for $1 < De < 20$. We show an example of this behavior in Fig. 10, which depicts the four light scattering patterns obtained at 100 s$^{-1}$ for a 0.17% MWNT by mass dispersion in the elastic Boger fluid, corresponding to a Deborah number of around 10. These observations are consistent with previous work on fibers suspended in highly elastic fluids, which suggest fiber orientation along the direction of flow at high De. For the weakly elastic PB melts, we note that the shear response up to the critical stress, or Deborah number, is analogous to the shear response of semi-dilute fiber suspensions in purely viscous fluids, with tube orientation along the direction of flow. Intuitively, one would expect the shear response of non-Brownian fibers to be independent of their size, and our measurements on this system appear to be in good agreement with this perception.

ACKNOWLEDGMENTS

We would like to thank J. A. Pathak for assistance with the Boger fluid preparation and rheology. One of us (H.K.) would like to acknowledge financial support from Kyunghee University.

17. Any free charge in the fullerene sheets will be mobile, and the polarizability parallel to the long axis of the tube is thus expected to be larger than the polarizability along directions parallel (\parallel) and perpendicular (\perp) to the director.
18. The expression $S(q) = S(0) \exp(-\xi^2 q^2/2) \times 1 - \xi^2 q^2/2 + \cdots$ is motivated by a small-q expansion of the structure factors for any general model, which yields a Gaussian profile at low-q. The fits include a “virtual” background that is consistently larger than the measured scattering intensity in the high-q limit, suggesting that the effective background is q-dependent. The range of wave vector used in these fits is $q < 2 \mu m^{-1}$.