Chapter 13 Physics of the Ear and Hearing

- Hearing
 - 100 times greater dynamic range than vision
 - Wide frequency range (20 ~ 20,000 Hz)
- Sense of hearing
 - Mechanical system that stimulates the hair cells in the cochlea
 - Sensors that produce action potentials in the auditory nerves
 - Auditory cortex in the brain
- Ear (Fig. 13.1): conversion of weak mechanical waves in air into electrical pulses in the auditory nerve
 - Outer ear: ear canal and eardrum (tympanic membrane)
 - Middle ear: three small bones (ossicles) and Eustachian tube
 - Inner ear: cochlea (hair cells in the origin of Corti in the cochlea)
- Medical specialists
 - Otologist, MD: disease of the ear and ear surgery
 - Otorhinolaryngologist or ENT specialist, MD: disease of the ear, nose, and throat
 - Audiologist, non-MD: measuring hearing response, diagnosing hearing disorders, hearing aids

1. The Outer Ear

- External auricle or pinna: not a part of the outer ear
 - Negligible effect on hearing
 - Cupping hand behind the ear ⇒ 6 ~ 8 dB gain
- External auditory canal
 - Storage of ear wax
 - 2.5 cm long with the diameter of a pencil ($\lambda/4 = 10$ cm)
 - Increase the sensitivity in the region of 3000 ~ 4000 Hz
 - Resonance frequency of 3300 Hz ($\lambda = 10$ cm): Fig. 13.2
- Eardrum or tympanic membrane
 - 0.1 mm thick (paper thin) and 65 mm2
• Couples the vibrations in the air to ossicles
• Non-symmetric vibration (Fig. 13.3)
• At 3000 Hz, \(10^{-9}\) cm movement for the sound intensity of the threshold of hearing
• At lower frequency, longer movement
• Sound pressure over 160 dB rupture the eardrum
• Ruptured eardrum normally heals like other living tissues

2. The Middle Ear

- Three small bones or ossicles (Fig. 13.3): full adult size before birth, fetus can hear in the womb
- Ossicles
 - Impedance matching between the eardrum and the liquid-filled chamber of the inner ear
 - Malleus (hammer), incus (anvil), stapes (stirrup)
 - Force amplification by a factor of about 20 (Fig. 13.4)
 - Lever action amplifies the force by a factor of about 1.3 between M and S
 - Piston action amplifies the force by a factor of about 15 between the eardrum and S
- Ossicles and their sensory ligaments
 - Protection against loud sounds: loud sound ⇒ muscles in the middle ear pull sideways on the ossicles in 15 ms or longer ⇒ reduce sound intensity by 15 dB
 - Noise pollution ⇒ may result in hearing loss
- Eustachian tube
 - Normally closed
 - Muscle movement during swallowing, yawing, or chewing causes a momentary opening
 - Equilibrate air pressure on both sides of the eardrum
 - Rapid pressure change ⇒ pressure difference across the eardrum ⇒ decreased sensitivity of the ear
 - 60 dB across the eardrum ⇒ pain
 - Viscous fluid from a head cold and the swelling of the tissue around the entrance of the tube ⇒ blockage of the Eustachian tube
3. The Inner Ear

- Best-protected sense organ (hidden deep within the hard bone of the skull)
- Oval window
 - Flexible membrane
 - Interface between the ossicles and the cochlea
 - Stapes transmits pressure vibrations to the cochlea through the oval window
- Cochlea
 - Small, spiral-shaped, fluid-filled structure
 - About the size of the tip of the little finger
 - About 3 cm long when straightened out
 - Produce coded electric pulses
 - The organ of Corti and three small fluid-filled chambers (Fig. 13.5): vestibular chamber, cochlear duct, tympanic chamber
 - Vestibular chamber and tympanic chamber are interconnected at the end of the spiral
 - Pressure transmission: stapes ⇒ oval windows ⇒ vestibular chamber ⇒ end of the spiral ⇒ tympanic chamber ⇒ flexible round window at the end of tympanic chamber
 - Action potential generation: oval window ⇒ wave-like ripple in the basilar membrane ⇒ small shear force on hair cells in the organ of Corti ⇒ action potentials
 - Encoding
 - Cochlear duct near the oval window ⇒ high-frequency sound
 - Cochlear duct near the tip of the spiral ⇒ low-frequency sound
 - < 10,000 Hz: frequency of nerve pulses is the same as sound frequency
 - > 10,000 Hz: frequency of nerve pulses < 10,000 Hz, location is encoded
- Auditory nerve
 - Interface between the cochlea and the brain
 - Bundle of about 8000 conductors
 - Carries electric pulses from the cochlea containing frequency and intensity information of the sound

4. Sensitivity of the Ear
Not uniform over 20 ~ 20,000 Hz
Most sensitive range: 2 ~ 5 kHz (Fig. 13.2)
Sensitivity is decreased for old people
 • 45 years old: no perception for over 12 kHz, need 10 dB more at 4 kHz than 20 years old
 • 65 years old: 25 dB loss for > 2 kHz
Loudness
 • Proportional to the logarithm of intensity
 • Unit: phone, one phone = 1 dB sound at 1000 Hz, 10 phones = 10 dB sound at 1000 Hz
 • Frequency dependent (Fig. 13.7)

5. Testing Your Hearing

Soundproof room
Test sound: 250 ~ 8000 Hz
Hearing threshold plot (Fig. 13.8)

6. Deafness and Hearing Aids

Deaf or hard of hearing: problem in hearing 300 ~ 3000 Hz, hearing threshold of 90 dB
Sound level: average 60 dB, 45 dB in a quiet room, 90 dB in a noisy party
Conduction hearing loss
 • May be temporary
 • May be due to solidification of the small bones in the middle ear
 • Surgery: replace the stapes with a piece of plastic
 • Use a hearing aids
Nerve hearing loss
 • May affect only a limited frequency range
 • Use a cochlear implant (artificial ear)
Hearing aids
 • Ear trumpet (Fig. 13.9, 10)
- Electronic hearing aids (Fig. 13.11, 12, 13): microphone, amplifier, loudspeaker